
Marvin J Slepian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Physically Transient Form of Silicon Electronics. Science, 2012, 337, 1640-1644.	6.0	1,085
2	A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 2016, 8, 366ra165.	5.8	933
3	Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1927-1932.	3.3	720
4	Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Materials, 2011, 10, 316-323.	13.3	670
5	Cardiac Replacement with a Total Artificial Heart as a Bridge to Transplantation. New England Journal of Medicine, 2004, 351, 859-867.	13.9	490
6	Conformal piezoelectric systems for clinical and experimental characterization of soft tissue biomechanics. Nature Materials, 2015, 14, 728-736.	13.3	387
7	Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2016, 2, e1601185.	4.7	310
8	Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19910-19915.	3.3	209
9	Relation between blood pressure and pulse wave velocity for human arteries. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11144-11149.	3.3	193
10	Epidermal devices for noninvasive, precise, and continuous mapping of macrovascular and microvascular blood flow. Science Advances, 2015, 1, e1500701.	4.7	189
11	Extracorporeal Membrane Oxygenation in the Treatment of Severe Pulmonary and Cardiac Compromise in Coronavirus Disease 2019: Experience with 32 Patients. ASAIO Journal, 2020, 66, 722-730.	0.9	149
12	Device Thrombogenicity Emulator (DTE) â^' Design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. Journal of Biomechanics, 2010, 43, 2400-2409.	0.9	107
13	β ₃ -Integrins Rather Than β ₁ -Integrins Dominate Integrin-Matrix Interactions Involved in Postinjury Smooth Muscle Cell Migration. Circulation, 1998, 97, 1818-1827.	1.6	102
14	Total artificial hearts: Bridge to transplantation. Cardiology Clinics, 2003, 21, 101-113.	0.9	101
15	Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices. Annals of Biomedical Engineering, 2013, 41, 1279-1296.	1.3	96
16	Total artificial heart bridge to transplantation: a 9-year experience with 62 patients. Journal of Heart and Lung Transplantation, 2004, 23, 823-831.	0.3	90
17	Device Thrombogenicity Emulation: A Novel Method for Optimizing Mechanical Circulatory Support Device Thromboresistance. PLoS ONE, 2012, 7, e32463.	1.1	86
18	The effect of subantimicrobial-dose–doxycycline periodontal therapy on serum biomarkers of systemic inflammation. Journal of the American Dental Association, 2011, 142, 262-273.	0.7	73

#	Article	IF	CITATIONS
19	Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD. Journal of Biomechanical Engineering, 2014, 136, 021014.	0.6	73
20	The Syncardiaâ,"¢ total artificial heart: in vivo, in vitro, and computational modeling studies. Journal of Biomechanics, 2013, 46, 266-275.	0.9	71
21	Core–shell PVA/gelatin electrospun nanofibers promote human umbilical vein endothelial cell and smooth muscle cell proliferation and migration. Acta Biomaterialia, 2015, 27, 77-87.	4.1	67
22	Risk Factor Analysis for Bridge to Transplantation With the CardioWest Total Artificial Heart. Annals of Thoracic Surgery, 2008, 85, 1639-1644.	0.7	61
23	Foodâ€Based Edible and Nutritive Electronics. Advanced Materials Technologies, 2017, 2, 1700181.	3.0	61
24	Shear-mediated platelet activation in the free flow: Perspectives on the emerging spectrum of cell mechanobiological mechanisms mediating cardiovascular implant thrombosis. Journal of Biomechanics, 2017, 50, 20-25.	0.9	61
25	Regulation of Cardiac Autonomic Nervous System Control across Frailty Statuses: A Systematic Review. Gerontology, 2016, 62, 3-15.	1.4	60
26	Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics. Cellular and Molecular Bioengineering, 2014, 7, 552-574.	1.0	56
27	Non-antibacterial tetracyclines modulate mediators of periodontitis and atherosclerotic cardiovascular disease: A mechanistic link between local and systemic inflammation. Pharmacological Research, 2011, 64, 573-579.	3.1	55
28	Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Review of Medical Devices, 2012, 9, 577-594.	1.4	54
29	In Vitro Evaluation of a Novel Hemodynamically Optimized Trileaflet Polymeric Prosthetic Heart Valve. Journal of Biomechanical Engineering, 2013, 135, 021021.	0.6	53
30	Thrombus Formation Patterns in the HeartMate II Ventricular Assist Device. ASAIO Journal, 2014, 60, 237-240.	0.9	52
31	Hemocompatibility of Poly(vinyl alcohol)–Gelatin Core–Shell Electrospun Nanofibers: A Scaffold for Modulating Platelet Deposition and Activation. ACS Applied Materials & Interfaces, 2015, 7, 8302-8312.	4.0	52
32	Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid–structure interaction approach. Journal of Biomechanics, 2015, 48, 3641-3649.	0.9	51
33	Novel Polymeric Valve for Transcatheter Aortic Valve Replacement Applications: In Vitro Hemodynamic Study. Annals of Biomedical Engineering, 2019, 47, 113-125.	1.3	50
34	Device thrombogenicity emulation: A novel methodology for optimizing the thromboresistance of cardiovascular devices. Journal of Biomechanics, 2013, 46, 338-344.	0.9	47
35	Advanced Pulmonary and Cardiac Support of COVID-19 Patients: Emerging Recommendations From ASAIO—A "Living Working Document― ASAIO Journal, 2020, 66, 588-598.	0.9	46
36	A multiscale biomechanical model of platelets: Correlating with in-vitro results. Journal of Biomechanics, 2017, 50, 26-33.	0.9	45

#	Article	IF	CITATIONS
37	Local Hemostasis during Laparoscopic Partial Nephrectomy Using Biodegradable Hydrogels: Initial Porcine Results. Journal of Endourology, 2002, 16, 489-494.	1.1	41
38	Nuclear factor kappa B (NF-κB): A novel cause for diabetes, coronary artery disease and cancer initiation and promotion?. Medical Hypotheses, 2012, 78, 29-32.	0.8	41
39	Coreâ€shell nanofibers: Integrating the bioactivity of gelatin and the mechanical property of polyvinyl alcohol. Biopolymers, 2014, 101, 336-346.	1.2	41
40	Effect of Balloonâ€Expandable Transcatheter Aortic Valve Replacement Positioning: A Patientâ€Specific Numerical Model. Artificial Organs, 2016, 40, E292-E304.	1.0	41
41	Toward Optimization of a Novel Trileaflet Polymeric Prosthetic Heart Valve via Device Thrombogenicity Emulation. ASAIO Journal, 2013, 59, 275-283.	0.9	40
42	Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuousâ€flow left ventricular assist device. European Journal of Heart Failure, 2018, 20, 792-800.	2.9	40
43	Advanced Pulmonary and Cardiac Support of COVID-19 Patients. Circulation: Heart Failure, 2020, 13, e007175.	1.6	39
44	Platelet Activation via Shear Stress Exposure Induces a Differing Pattern of Biomarkers of Activation versus Biochemical Agonists. Thrombosis and Haemostasis, 2020, 120, 776-792.	1.8	38
45	Linear fibroblast alignment on sinusoidal wave micropatterns. Colloids and Surfaces B: Biointerfaces, 2013, 104, 318-325.	2.5	37
46	High Frequency Components of Hemodynamic Shear Stress Profiles are a Major Determinant of Shear-Mediated Platelet Activation in Therapeutic Blood Recirculating Devices. Scientific Reports, 2017, 7, 4994.	1.6	36
47	Mechanisms and Pathways of Pain Photobiomodulation: A Narrative Review. Journal of Pain, 2021, 22, 763-777.	0.7	36
48	Comparative Fluid–Structure Interaction Analysis of Polymeric Transcatheter and Surgical Aortic Valves' Hemodynamics and Structural Mechanics. Journal of Biomechanical Engineering, 2018, 140, .	0.6	34
49	Zebrafish swimming behavior as a biomarker for ototoxicity-induced hair cell damage: a high-throughput drug development platform targeting hearing loss. Translational Research, 2015, 166, 440-450.	2.2	33
50	Catheter-Based Systems With Integrated Stretchable Sensors and Conductors in Cardiac Electrophysiology. Proceedings of the IEEE, 2015, 103, 682-689.	16.4	33
51	Polymeric endoluminal gel paving: hydrogel systems for local barrier creation and site-specific drug delivery. Advanced Drug Delivery Reviews, 1997, 24, 11-30.	6.6	31
52	Gelatin shells strengthen polyvinyl alcohol core–shell nanofibers. Polymer, 2013, 54, 6003-6007.	1.8	31
53	Simulation of Platelets Suspension Flowing Through a Stenosis Model Using a Dissipative Particle Dynamics Approach. Annals of Biomedical Engineering, 2013, 41, 2318-2333.	1.3	31
54	Aspirin has limited ability to modulate shear-mediated platelet activation associated with elevated shear stress of ventricular assist devices. Thrombosis Research, 2016, 140, 110-117.	0.8	31

#	Article	IF	CITATIONS
55	Surface Modification of Electrospun Scaffolds for Endothelialization of Tissue-Engineered Vascular Grafts Using Human Cord Blood-Derived Endothelial Cells. Journal of Clinical Medicine, 2019, 8, 185.	1.0	30
56	Thrombotic Risk of Rotor Speed Modulation Regimes of Contemporary Centrifugal Continuous-flow Left Ventricular Assist Devices. ASAIO Journal, 2021, 67, 737-745.	0.9	30
57	Single cell gene expression analysis in injury-induced collective cell migration. Integrative Biology (United Kingdom), 2014, 6, 192-202.	0.6	28
58	Dielectrophoresis-Mediated Electrodeformation as a Means of Determining Individual Platelet Stiffness. Annals of Biomedical Engineering, 2016, 44, 903-913.	1.3	28
59	Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis?. International Journal of Artificial Organs, 2019, 42, 113-124.	0.7	28
60	Automatic Implantable Cardioverter Defibrillator/Permanent Pacemaker Interaction: Loss of Pacemaker Capture Following AICD Discharge. PACE - Pacing and Clinical Electrophysiology, 1987, 10, 1194-1197.	0.5	27
61	Results with an Anticoagulation Protocol in 99 SynCardia Total Artificial Heart Recipients. ASAIO Journal, 2013, 59, 216-220.	0.9	27
62	A phenomenological particleâ€based platelet model for simulating filopodia formation during early activation. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31, e02702.	1.0	27
63	Reactive Oxygen Species–Associated Molecular Signature Predicts Survival in Patients with Sepsis. Pulmonary Circulation, 2016, 6, 196-201.	0.8	25
64	Repetitive Hypershear Activates and Sensitizes Platelets in a Doseâ€Dependent Manner. Artificial Organs, 2016, 40, 586-595.	1.0	25
65	Platelet Dysfunction During Mechanical Circulatory Support. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1319-1336.	1.1	25
66	Pre-Conditioning of Smooth Muscle Cells via Induction of the Heat Shock Response Limits Proliferation Following Mechanical Injury. Biochemical and Biophysical Research Communications, 1996, 225, 600-607.	1.0	24
67	Device Malfunction of the CardioWest Total Artificial Heart Secondary to Catheter Entrapment of the Tricuspid Valve. ASAIO Journal, 2010, 56, 481-482.	0.9	24
68	Impella 5.5 Versus Centrimag: A Head-to-Head Comparison of Device Hemocompatibility. ASAIO Journal, 2020, 66, 1142-1151.	0.9	24
69	Sildenafil Is Associated With Reduced Device Thrombosis and Ischemic Stroke Despite Low-Level Hemolysis on Heart Mate II Support. Circulation: Heart Failure, 2017, 10, .	1.6	23
70	Multi-institutional Analysis of 100 Consecutive Patients with COVID-19 and Severe Pulmonary Compromise Treated with Extracorporeal Membrane Oxygenation: Outcomes and Trends Over Time. ASAIO Journal, 2021, 67, 496-502.	0.9	23
71	Microfluidic emulation of mechanical circulatory support device shear-mediated platelet activation. Biomedical Microdevices, 2015, 17, 117.	1.4	22
72	Physiological Characterization of the SynCardia Total Artificial Heart in a Mock Circulation System. ASAIO Journal, 2015, 61, 274-281.	0.9	22

#	Article	IF	CITATIONS
73	Numerical Model of Full-Cardiac Cycle Hemodynamics in a Total Artificial Heart and the Effect of Its Size on Platelet Activation. Journal of Cardiovascular Translational Research, 2014, 7, 788-796.	1.1	20
74	Hemolysate-mediated platelet aggregation: an additional risk mechanism contributing to thrombosis of continuous flow ventricular assist devices. Perfusion (United Kingdom), 2016, 31, 401-408.	0.5	20
75	Multi-institutional Analysis of 505 Patients With Coronavirus Disease-2019 Supported With Extracorporeal Membrane Oxygenation: Predictors of Survival. Annals of Thoracic Surgery, 2022, 114, 61-68.	0.7	20
76	Quadricuspid aortic valve with ascending aortic aneurysm: report of a case and discussion of embryological mechanisms. Cardiovascular Pathology, 2009, 18, 49-52.	0.7	18
77	Comparative efficacy of in vitro and in vivo metabolized aspirin in the DeBakey ventricular assist device. Journal of Thrombosis and Thrombolysis, 2014, 37, 499-506.	1.0	18
78	Physical Characterization and Platelet Interactions under Shear Flows of a Novel Thermoset Polyisobutylene-based Co-polymer. ACS Applied Materials & Interfaces, 2015, 7, 22058-22066.	4.0	18
79	In Vitro Durability and Stability Testing of a Novel Polymeric Transcatheter Aortic Valve. ASAIO Journal, 2020, 66, 190-198.	0.9	18
80	Microfluidic Approaches for the Assessment of Blood Cell Trauma: A Focus on Thrombotic Risk in Mechanical Circulatory Support Devices. International Journal of Artificial Organs, 2016, 39, 184-193.	0.7	17
81	Prothrombotic activity of cytokine-activated endothelial cells and shear-activated platelets in the setting of ventricular assist device support. Journal of Heart and Lung Transplantation, 2019, 38, 658-667.	0.3	17
82	Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity. PLoS Computational Biology, 2019, 15, e1006863.	1.5	17
83	Papillary muscle repair surgery in ischemic mitral valve patients. Annals of Thoracic Surgery, 2000, 70, 771-777.	0.7	16
84	Collective cell migration of smooth muscle and endothelial cells: impact of injury versus non-injury stimuli. Journal of Biological Engineering, 2015, 9, 19.	2.0	16
85	Ventricular Assist Device Implantation Configurations Impact Overall Mechanical Circulatory Support System Thrombogenic Potential. ASAIO Journal, 2017, 63, 285-292.	0.9	16
86	Polymeric Endoluminal Paving: A Family of Evolving Methods for Extending Endoluminal Therapeutics Beyond Stenting. Cardiology Clinics, 1994, 12, 715-737.	0.9	16
87	Coronary artery bifurcation lesions: a review and update on classification and interventional techniques. Cardiovascular Revascularization Medicine, 2008, 9, 263-268.	0.3	15
88	Routine clinical anti-platelet agents have limited efficacy in modulating hypershear-mediated platelet activation associated with mechanical circulatory support. Thrombosis Research, 2018, 163, 162-171.	0.8	15
89	Device Thrombogenicity Emulation: An In Silico Predictor of In Vitro and In Vivo Ventricular Assist Device Thrombogenicity. Scientific Reports, 2019, 9, 2946.	1.6	15
90	Plantar Fat Grafting and Tendon Balancing for the Diabetic Foot Ulcer in Remission. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e810.	0.3	14

#	Article	IF	CITATIONS
91	Peripheral VA-ECMO with direct biventricular decompression for refractory cardiogenic shock. Perfusion (United Kingdom), 2018, 33, 493-495.	0.5	14
92	Shear-Mediated Platelet Activation Enhances Thrombotic Complications in Patients With LVADs and Is Reversed After Heart Transplantation. ASAIO Journal, 2019, 65, e33-e35.	0.9	14
93	Multi-institutional Analysis of 200 COVID-19 Patients treated with ECMO:Outcomes and Trends. Annals of Thoracic Surgery, 2021, , .	0.7	14
94	A novel big-data processing framwork for healthcare applications: Big-data-healthcare-in-a-box. , 2016, , .		13
95	Cybersecurity Regulation of Wireless Devices for Performance and Assurance in the Age of "Medjacking― Journal of Diabetes Science and Technology, 2016, 10, 435-438.	1.3	13
96	Migration versus proliferation as contributor to in vitro wound healing of vascular endothelial and smooth muscle cells. Experimental Cell Research, 2019, 376, 58-66.	1.2	13
97	Pulse transmission coefficient: a novel nonhyperemic parameter for assessing the physiological significance of coronary artery stenoses. Journal of the American College of Cardiology, 2002, 39, 1012-1019.	1.2	12
98	Multifunctional balloon catheters of the future. Interventional Cardiology, 2011, 3, 417-419.	0.0	12
99	Home Discharge and Out-of-Hospital Follow-Up of Total Artificial Heart Patients Supported by a Portable Driver System. ASAIO Journal, 2014, 60, 148-153.	0.9	11
100	Application of big-data in healthcare analytics $\hat{a} \in \ref{algebra}$ Prospects and challenges. , 2016, , .		11
101	A predictive multiscale model for simulating flow-induced platelet activation: Correlating in silico results with in vitro results. Journal of Biomechanics, 2021, 117, 110275.	0.9	11
102	Simulation of Transcatheter Aortic Valve Replacement in patient-specific aortic roots: Effect of crimping and positioning on device performance. , 2015, 2015, 282-5.		10
103	The SynCardia CardioWestâ,"¢ Total Artificial Heart. Fundamental and Clinical Cardiology, 2006, , 473-490.	0.0	10
104	The total artificial heart in refractory cardiogenic shock: saving the patient versus saving the heart. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 64-65.	3.3	9
105	Microfludic platforms for the evaluation of anti-platelet agent efficacy under hyper-shear conditions associated with ventricular assist devices. Medical Engineering and Physics, 2017, 48, 31-38.	0.8	9
106	Stretchable Electronic Wearable Motion Sensors Delineate Signatures of Human Motion Tasks. ASAIO Journal, 2018, 64, 351-359.	0.9	9
107	Vascular endothelial and smooth muscle cell galvanotactic response and differential migratory behavior. Experimental Cell Research, 2021, 399, 112447.	1.2	9
108	Shear-mediated platelet activation in the free flow II: Evolving mechanobiological mechanisms reveal an identifiable signature of activation and a bi-directional platelet dyscrasia with thrombotic and bleeding features. Journal of Biomechanics, 2021, 123, 110415.	0.9	9

#	Article	IF	CITATIONS
109	Nanowellâ€Trapped Charged Ligandâ€Bearing Nanoparticle Surfaces: A Novel Method of Enhancing Flowâ€Resistant Cell Adhesion. Advanced Healthcare Materials, 2013, 2, 1019-1027.	3.9	8
110	How to do it: Thoracoscopic left ventricular assist device implantation using robot assistance. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 1423-1425.	0.4	8
111	Robotic Left Ventricular Assist Device Implantation Using Left Thoracotomy Approach in Patients with Previous Sternotomies. ASAIO Journal, 2015, 61, e44-e46.	0.9	8
112	Shear-mediated platelet activation in patients implanted with continuous flow LVADs: A preliminary study utilizing the platelet activity state (PAS) assay. , 2015, 2015, 1255-8.		8
113	Advances in Techniques for Probing Mechanoregulation of Tissue Morphogenesis. Journal of the Association for Laboratory Automation, 2015, 20, 127-137.	2.8	8
114	A Physical Heart Failure Simulation System Utilizing the Total Artificial Heart and Modified Donovan Mock Circulation. Artificial Organs, 2017, 41, E52-E65.	1.0	8
115	Microfluidic flow-based platforms for induction and analysis of dynamic shear-mediated platelet activation—Initial validation versus the standardized hemodynamic shearing device. Biomicrofluidics, 2018, 12, 042208.	1.2	8
116	Decreasing Wound Edge Stress Enhances Leader Cell Formation during Collective Smooth Muscle Cell Migration. ACS Biomaterials Science and Engineering, 2019, 5, 3864-3875.	2.6	8
117	Human motion component and envelope characterization via wireless wearable sensors. BMC Biomedical Engineering, 2020, 2, 3.	1.7	7
118	Potential role of oral anticoagulants in the treatment of patients with coronary artery disease: focus on dabigatran. Expert Review of Cardiovascular Therapy, 2013, 11, 1259-1267.	0.6	6
119	Visions of TAVR Future: Development and Optimization of a Second Generation Novel Polymeric TAVR. Journal of Biomechanical Engineering, 2022, 144, .	0.6	6
120	Smart Phone-Based Motion Capture and Analysis: Importance of Operating Envelope Definition and Application to Clinical Use. Applied Sciences (Switzerland), 2022, 12, 6173.	1.3	6
121	Shear- vs. nanotopography-guided control of growth of endothelial cells on RGD-nanoparticle-nanowell arrays. Journal of Biological Engineering, 2013, 7, 11.	2.0	5
122	Multiscale Modeling of Flow Induced Thrombogenicity With Dissipative Particle Dynamics and Molecular Dynamics. Journal of Medical Devices, Transactions of the ASME, 2013, 7, 0209541-209542.	0.4	5
123	Patientâ€specific in vitro testing for evaluating TAVR clinical performance—A complementary approach to current ISO standard testing. Artificial Organs, 2021, 45, E41-E52.	1.0	5
124	Renal Considerations in COVID-19: Biology, Pathology, and Pathophysiology. ASAIO Journal, 2021, 67, 1087-1096.	0.9	5
125	Hemocompatibility of polymers for use in vascular endoluminal implants. Journal of Applied Polymer Science, 2021, 138, 51277.	1.3	5
126	DNA Origami–Platelet Adducts: Nanoconstruct Binding without Platelet Activation. Bioconjugate Chemistry, 2022, 33, 1295-1310.	1.8	5

#	Article	IF	CITATIONS
127	Percutaneous intervention for unprotected left main disease prior to explantation of a left ventricular assist device. Catheterization and Cardiovascular Interventions, 2003, 59, 471-474.	0.7	4
128	Robotic-Assisted Implantation of Ventricular Assist Device After Sternectomy and Pectoralis Muscle Flap. ASAIO Journal, 2014, 60, 742-743.	0.9	4
129	Remote Ischemic Conditioning. Journal of the American Podiatric Medical Association, 2017, 107, 313-317.	0.2	4
130	The Influence of Polymer Processing Methods on Polymer Film Physical Properties and Vascular Cell Responsiveness. ACS Applied Bio Materials, 2019, 2, 3234-3244.	2.3	4
131	Circulatory loop design and components introduce artifacts impacting inÂvitro evaluation of ventricular assist device thrombogenicity: A call for caution. Artificial Organs, 2020, 44, E226-E237.	1.0	4
132	The MICELI (MICrofluidic, ELectrical, Impedance): Prototyping a Point-of-Care Impedance Platelet Aggregometer. International Journal of Molecular Sciences, 2020, 21, 1174.	1.8	4
133	Evolving perspectives on mechanical circulatory support biocompatibility and interfaces. Annals of Cardiothoracic Surgery, 2021, 10, 396-398.	0.6	4
134	Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology. Critical Reviews in Biomedical Engineering, 2020, 48, 1-16.	0.5	4
135	A computational framework for postâ€TAVR cardiac conduction abnormality (CCA) risk assessment in patientâ€specific anatomy. Artificial Organs, 2022, 46, 1305-1317.	1.0	4
136	Sticking with Synthetic Tissue Sealants. New England Journal of Medicine, 2014, 370, 1556-1559.	13.9	3
137	Stent thrombosis after aggressive post resuscitation care: The beginning or the end?. Resuscitation, 2014, 85, 711-713.	1.3	3
138	The platelet hammer: In vitro platelet activation under repetitive hypershear. , 2015, 2015, 262-5.		3
139	Description and evaluation of a ventriculo-coronary artery bypass device that provides bi-directional coronary flow. European Journal of Cardio-thoracic Surgery, 2004, 25, 43-50.	0.6	2
140	The pharmacodynamics of enoxaparin in percutaneous coronary intervention with precise rapid enoxaparin loading (PEPCI-PRE study). Journal of Thrombosis and Thrombolysis, 2009, 28, 224-228.	1.0	2
141	First North American 50 cc Total Artificial Heart Experience: Conversion from a 70 cc Total Artificial Heart. ASAIO Journal, 2016, 62, e43-e45.	0.9	2
142	Multifunctional Epidermal Sensor Systems with Ultrathin Encapsulation Packaging for Health Monitoring. Microsystems and Nanosystems, 2016, , 193-205.	0.1	2
143	Which Antiplatelet Therapy in Patients With Left Ventricular Assist Device and Aspirin Allergy?. Annals of Thoracic Surgery, 2018, 105, e47-e49.	0.7	2
144	Design Effect of Metallic (Durable) and Polymeric (Resorbable) Stents on Blood Flow and Platelet Activation. Artificial Organs, 2018, 42, 1148-1156.	1.0	2

#	Article	IF	CITATIONS
145	LVAD Pulsatility Assesses Cardiac Contractility: In Vitro Model Utilizing the Total Artificial Heart and Mock Circulation. ASAIO Journal, 2019, 65, 580-586.	0.9	2
146	Characterization of the competing role of surface-contact and shear stress on platelet activation in the setting of blood contacting devices. International Journal of Artificial Organs, 2021, 44, 1013-1020.	0.7	2
147	Multiscale Modeling of Blood Flow-Mediated Platelet Thrombosis. , 2020, , 2667-2698.		2
148	Endoluminal hydrogel polymer layers provide prolonged heparin delivery to porcine coronary artery walls in vivo. Journal of the American College of Cardiology, 1996, 27, 85.	1.2	1
149	Dynamic Shear Stress Induced Platelet Activation in Blood Recirculation Devices: Implications for Thrombogenicity Minimization. , 2009, , .		1
150	Numerical model of total artificial heart hemodynamics and the effect of its size on stress accumulation. , 2014, 2014, 5651-4.		1
151	Multiscale Modeling of Blood Flow-Mediated Platelet Thrombosis. , 2018, , 1-32.		1
152	Design, Modeling, and Experimental Characterization of A Valveless Pulsatile Flow Mechanical Circulatory Support Device. Journal of Medical Devices, Transactions of the ASME, 2021, 15, .	0.4	1
153	Shear-Mediated Platelet Activation is Accompanied by Unique Alterations in Platelet Release of Lipids. Cellular and Molecular Bioengineering, 2021, 14, 597-612.	1.0	1
154	Electrical impedance vs. light transmission aggregometry: Testing platelet reactivity to antiplatelet drugs using the MICELI POC impedance aggregometer as compared to a commercial predecessor. Thrombosis Research, 2021, 204, 66-75.	0.8	1
155	An adaptable and non-invasive method for tracking Bifidobacterium animalis subspecies lactis 420 in the mouse gut. Journal of Microbiological Methods, 2021, 189, 106302.	0.7	1
156	Platelet Activity State in Human, Bovine, and Ovine Species Under Constant Shear Stress: A Comparative Study. , 2013, , .		1
157	Big Data Analytics + Virtual Clinical Semantic Network (vCSN): An Approach to Addressing the Increasing Clinical Nuances and Organ Involvement of COVID-19. ASAIO Journal, 2021, 67, 18-24.	0.9	1
158	Oral-body inflammatory connection. Dentistry Today, 2009, 28, 138, 140, 142-3.	0.1	1
159	Seamless anticoagulation therapy utilizing enoxaparin for acute coronary syndromes: Measure or not, here it comes!. Catheterization and Cardiovascular Interventions, 2004, 61, 171-172.	0.7	0
160	Design Optimization of Rotary Blood Pumps: Alternatives to Anticoagulation Therapy. , 2011, , .		0
161	Dynamic Numerical and Experimental Evaluation of Trileaflet Polymer Prosthetic Heart Valves. , 2011, , .		0
162	Comparative Studies of Axial Ventricular Assist Devices (VAD) and the Effect of Outflow Cannulation. , 2013, , .		0

#	Article	IF	CITATIONS
163	In Vitro Evaluation of Shear-Induced Platelet Activation in the MicroMed DeBakey Ventricular Assist Device With Antiplatelet Therapy. , 2013, , .		0
164	Design Optimization of a Novel Polymeric Prosthetic Heart Valve and a Ventricular Assist Device via Device Thrombogenicity Emulation. , 2013, , .		0
165	Multiscale Modeling of Flow Induced Thrombogenicity Using Dissipative Particle Dynamics and Molecular Dynamics. , 2013, , .		0
166	Biomaterials: Nanowellâ€Trapped Charged Ligandâ€Bearing Nanoparticle Surfaces: A Novel Method of Enhancing Flowâ€Resistant Cell Adhesion (Adv. Healthcare Mater. 7/2013). Advanced Healthcare Materials, 2013, 2, 1064-1064.	3.9	0
167	Multiscale Modeling of Flow Induced Thrombogenicity With Dissipative Particle Dynamics (DPD) and Molecular Dynamics (MD). , 2013, , .		0
168	Interaction With Nanoscale Topography: The Use of Nanowell-Trapped Charged Ligand-Bearing Nanoparticle Surfaces To Modulate Physiological Focal Adhesions in Endothelial Cells. , 2013, , .		0
169	Case Report: Disparate flow in HeartMate II patient with extensive left ventricle repair. Perfusion (United Kingdom), 2016, 31, 349-352.	0.5	0
170	Welcome to "24 +1 = 25―the Quarter Century Anniversary Meeting of Our Society: Evolving to the International Society for Mechanical Circulatory Support. Artificial Organs, 2017, 41, 888-889.	1.0	0
171	P2Y12 Receptor Antagonists: Do They Really Inhibit Shear-Mediated Platelet Activation within MCS?. Journal of Heart and Lung Transplantation, 2019, 38, S372.	0.3	0
172	A Big-Data Approach to Defining Breathing Signatures for Identifying Respiratory Disease. , 2019, , .		0
173	Patterned Electrospinning: A Method of Generating Defined Fibrous Constructs Influencing Cell Adhesion and Retention. ACS Applied Bio Materials, 2021, 4, 4084-4093.	2.3	0
174	Highlights from the 66th Annual Meeting of the American Society for Artificial Internal Organs in Washington, DC. Artificial Organs, 2021, 45, 1250-1256.	1.0	0
175	In-Vitro Thrombogenicity Assessment of Mechanical Circulatory Support Devices and Prosthetic Heart Valves. , 2010, , .		0
176	Thrombogenicity Comparison of Axial Ventricular Assist Devices by DTE Methodology: MicroMed HeartAssist 5 and Thoratec Heartmate II. , 2012, , .		0
177	Platelet Activity of Coaxial Electrospun Scaffolds for Applications in Cardiovascular Tissue Engineering. , 2013, , .		0
178	Bond Graph Modeling of Mechanical Circulatory Support Device—Cardiovascular System Interactions. Journal of Biomechanical Engineering, 2020, 142, .	0.6	0