Louis Y P Luk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6159104/publications.pdf

Version: 2024-02-01

52 1,372 20 35
papers citations h-index g-index

58 58 58 1699
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Computational design of an amidase by combining the best electrostatic features of two promiscuous hydrolases. Chemical Science, 2022, 13, 4779-4787.	7.4	6
2	Spatioâ€temporal control of cell death by selective delivery of photoâ€activatable proteins. ChemBioChem, 2022, , .	2.6	3
3	Effect of Trimethine Cyanine Dye- and Folate-Conjugation on the In Vitro Biological Activity of Proapoptotic Peptides. Biomolecules, 2022, 12, 725.	4.0	O
4	Asparaginyl endopeptidases: enzymology, applications and limitations. Organic and Biomolecular Chemistry, 2021, 19, 5048-5062.	2.8	25
5	Approaches for peptide and protein cyclisation. Organic and Biomolecular Chemistry, 2021, 19, 3983-4001.	2.8	32
6	Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts. Chemical Communications, 2021, 57, 1919-1922.	4.1	10
7	Cryoâ€kinetics Reveal Dynamic Effects on the Chemistry of Human Dihydrofolate Reductase. ChemBioChem, 2021, 22, 2410-2414.	2.6	1
8	Combined Theoretical and Experimental Study to Unravel the Differences in Promiscuous Amidase Activity of Two Nonhomologous Enzymes. ACS Catalysis, 2021, 11, 8635-8644.	11.2	6
9	Transferability of N-terminal mutations of pyrrolysyl-tRNA synthetase in one species to that in another species on unnatural amino acid incorporation efficiency. Amino Acids, 2021, 53, 89-96.	2.7	3
10	The role of streptavidin and its variants in catalysis by biotinylated secondary amines. Organic and Biomolecular Chemistry, 2021, 19, 10424-10431.	2.8	2
11	Comparative biological evaluation and G-quadruplex interaction studies of two new families of organometallic gold(I) complexes featuring N-heterocyclic carbene and alkynyl ligands. Journal of Inorganic Biochemistry, 2020, 202, 110844.	3.5	42
12	Applying switchable Cas9 variants to in vivo gene editing for therapeutic applications. Cell Biology and Toxicology, 2020, 36, 17-29.	5. 3	10
13	Electric Field Measurements Reveal the Pivotal Role of Cofactor–Substrate Interaction in Dihydrofolate Reductase Catalysis. ACS Catalysis, 2020, 10, 7907-7914.	11.2	2
14	Exploring the Chemoselectivity towards Cysteine Arylation by Cyclometallated Au ^{III} Compounds: New Mechanistic Insights. ChemBioChem, 2020, 21, 3071-3076.	2.6	25
15	Cyanine dye mediated mitochondrial targeting enhances the anti-cancer activity of small-molecule cargoes. Chemical Communications, 2020, 56, 4672-4675.	4.1	32
16	Streptavidin-Hosted Organocatalytic Aldol Addition. Molecules, 2020, 25, 2457.	3.8	9
17	Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. Journal of the American Chemical Society, 2020, 142, 5097-5103.	13.7	48
18	Enabling protein-hosted organocatalytic transformations. RSC Advances, 2020, 10, 16147-16161.	3.6	5

#	Article	IF	CITATIONS
19	Use of an asparaginyl endopeptidase for chemo-enzymatic peptide and protein labeling. Chemical Science, 2020, 11, 5881-5888.	7.4	39
20	Loss of Hyperconjugative Effects Drives Hydride Transfer during Dihydrofolate Reductase Catalysis. ACS Catalysis, 2019, 9, 10343-10349.	11.2	1
21	Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays in Biochemistry, 2019, 63, 237-266.	4.7	72
22	Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Scientific Reports, 2019, 9, 6298.	3.3	173
23	Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State. Angewandte Chemie - International Edition, 2018, 57, 3128-3131.	13.8	10
24	Reaction Mechanism of Organocatalytic Michael Addition of Nitromethane to Cinnamaldehyde: A Case Study on Catalyst Regeneration and Solvent Effects. Journal of Physical Chemistry A, 2018, 122, 451-459.	2.5	20
25	Isotope Substitution of Promiscuous Alcohol Dehydrogenase Reveals the Origin of Substrate Preference in the Transition State. Angewandte Chemie, 2018, 130, 3182-3185.	2.0	2
26	Switchable genome editing via genetic code expansion. Scientific Reports, 2018, 8, 10051.	3.3	11
27	Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angewandte Chemie - International Edition, 2018, 57, 12478-12482.	13.8	38
28	Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angewandte Chemie, 2018, 130, 12658-12662.	2.0	14
29	Carbapenems as water soluble organocatalysts. Wellcome Open Research, 2018, 3, 107.	1.8	3
30	Reduction of Folate by Dihydrofolate Reductase from <i>Thermotoga maritima</i> . Biochemistry, 2017, 56, 1879-1886.	2.5	12
31	A Versatile Disulfide-Driven Recycling System for NADP ⁺ with High Cofactor Turnover Number. ACS Catalysis, 2017, 7, 1025-1029.	11.2	27
32	Reactions of biologically inspired hydride sources with B(C ₆ F ₅) ₃ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20170009.	3.4	7
33	Chemoenzymatic Assembly of Isotopically Labeled Folates. Journal of the American Chemical Society, 2017, 139, 13047-13054.	13.7	4
34	Site-specific His/Asp phosphoproteomic analysis of prokaryotes reveals putative targets for drug resistance. BMC Microbiology, 2017, 17, 123.	3.3	18
35	Acetylome of Acinetobacter baumannii SK17 Reveals a Highly-Conserved Modification of Histone-Like Protein HU. Frontiers in Molecular Biosciences, 2017, 4, 77.	3.5	13
36	Chemical Ligation and Isotope Labeling to Locate Dynamic Effects. Methods in Enzymology, 2017, 596, 23-41.	1.0	2

#	Article	IF	CITATIONS
37	\hat{l}^21 -subunit $\hat{a}\in \hat{l}$ induced structural rearrangements of the Ca ²⁺ - and voltage-activated K ⁺ (BK) channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3231-9.	7.1	14
38	Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chemical Science, 2016, 7, 3248-3255.	7.4	25
39	Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Angewandte Chemie - International Edition, 2015, 54, 9016-9020.	13.8	35
40	Protein motions and dynamic effects in enzyme catalysis. Physical Chemistry Chemical Physics, 2015, 17, 30817-30827.	2.8	41
41	Protein Motions, Dynamic Effects and Thermal Stability in Dihydrofolate Reductase from the Hyperthermophile Thermotoga maritima. , 2015, , 99-113.		0
42	Protein Isotope Effects in Dihydrofolate Reductase From <i>Geobacillus stearothermophilus</i> Show Entropic–Enthalpic Compensatory Effects on the Rate Constant. Journal of the American Chemical Society, 2014, 136, 17317-17323.	13.7	34
43	Different Dynamical Effects in Mesophilic and Hyperthermophilic Dihydrofolate Reductases. Journal of the American Chemical Society, 2014, 136, 6862-6865.	13.7	26
44	Role of the Occluded Conformation in Bacterial Dihydrofolate Reductases. Biochemistry, 2014, 53, 4761-4768.	2.5	12
45	Thermal Adaptation of Dihydrofolate Reductase from the Moderate Thermophile <i>Geobacillus stearothermophilus</i> . Biochemistry, 2014, 53, 2855-2863.	2.5	17
46	Effect of Dimerization on Dihydrofolate Reductase Catalysis. Biochemistry, 2013, 52, 3881-3887.	2.5	9
47	Increased Dynamic Effects in a Catalytically Compromised Variant of <i>Escherichia coli</i> Dihydrofolate Reductase. Journal of the American Chemical Society, 2013, 135, 18689-18696.	13.7	56
48	Rearrangements in the mechanisms of the indole alkaloid prenyltransferases. Pure and Applied Chemistry, 2013, 85, 1935-1948.	1.9	11
49	Unraveling the role of protein dynamics in dihydrofolate reductase catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16344-16349.	7.1	119
50	A Cope Rearrangement in the Reaction Catalyzed by Dimethylallyltryptophan Synthase?. Journal of the American Chemical Society, 2011, 133, 12342-12345.	13.7	70
51	Mechanism of Dimethylallyltryptophan Synthase: Evidence for a Dimethylallyl Cation Intermediate in an Aromatic Prenyltransferase Reaction. Journal of the American Chemical Society, 2009, 131, 13932-13933.	13.7	60
52	Mechanistic Studies on Norcoclaurine Synthase of Benzylisoquinoline Alkaloid Biosynthesis:  An Enzymatic Pictetâ^'Spengler Reaction. Biochemistry, 2007, 46, 10153-10161.	2.5	111