Lidia Favier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6158782/publications.pdf

Version: 2024-02-01

623734 610901 46 688 14 24 h-index citations g-index papers 49 49 49 745 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bioaugmentation: Possible solution in the treatment of Bio-Refractory Organic Compounds (Bio-ROCs). Biochemical Engineering Journal, 2012, 69, 75-86.	3.6	89
2	Potential of newly isolated wild <i>Streptomyces</i> strains as agents for the biodegradation of a recalcitrant pharmaceutical, carbamazepine. Environmental Technology (United Kingdom), 2014, 35, 3082-3091.	2.2	57
3	Performance assessment of five adsorbents based on fly ash for removal of cadmium ions. Journal of Molecular Liquids, 2021, 333, 115932.	4.9	41
4	TiO2 Doped with Noble Metals as an Efficient Solution for the Photodegradation of Hazardous Organic Water Pollutants at Ambient Conditions. Water (Switzerland), 2021, 13, 19.	2.7	41
5	Photocatalytic degradation of bezacryl yellow in batch reactors – feasibility of the combination of photocatalysis and a biological treatment. Environmental Technology (United Kingdom), 2015, 36, 1-10.	2.2	39
6	Response surface optimization of experimental conditions for carbamazepine biodegradation by Streptomyces MIUG 4.89. New Biotechnology, 2015, 32, 347-357.	4.4	34
7	Modeling Stability of Photoheterotrophic Continuous Cultures in Photobioreactors. Biotechnology Progress, 2008, 19, 1216-1227.	2.6	28
8	Enhanced photocatalytic degradation of caffeine as a model pharmaceutical pollutant by Ag-ZnO-Al2O3 nanocomposite., 0, 94, 254-262.		28
9	EFFICIENT DEGRADATION OF CLOFIBRIC ACID BY HETEROGENEOUS PHOTOCATALYTIC OXIDATION PROCESS. Environmental Engineering and Management Journal, 2019, 18, 1683-1692.	0.6	27
10	CHALLENGES AND OPORTUNITIES IN GREEN PLASTICS: AN ASSESSMENT USING THE ELECTRE DECISION-AID METHOD. Environmental Engineering and Management Journal, 2015, 14, 689-702.	0.6	23
11	Biosorption characteristics of methylene blue dye by two fungal biomasses. International Journal of Environmental Studies, 2021, 78, 365-381.	1.6	20
12	New Evidence of the Enhanced Elimination of a Persistent Drug Used as a Lipid Absorption Inhibitor by Advanced Oxidation with UV-A and Nanosized Catalysts. Catalysts, 2019, 9, 761.	3.5	18
13	Successful Biodegradation of a Refractory Pharmaceutical Compound by an Indigenous Phenol-Tolerant Pseudomonas aeruginosa Strain. Water, Air, and Soil Pollution, 2018, 229, 1.	2.4	16
14	Controlling contamination for determination of ultra-trace levels of priority pollutants chlorophenols in environmental water matrices. Arabian Journal of Chemistry, 2019, 12, 2905-2913.	4.9	16
15	Screening of soil bacteria as potential agents for drugs biodegradation: a case study with clofibric acid. Journal of Chemical Technology and Biotechnology, 2016, 91, 1646-1653.	3.2	15
16	REMOVAL OF AN ORGANIC REFRACTORY COMPOUND BY PHOTOCATALYSIS IN BATCH REACTOR - KINETIC STUDIES. Environmental Engineering and Management Journal, 2015, 14, 1327-1338.	0.6	15
17	Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean Journal of Chemical Engineering, 2014, 31, 1008-1015.	2.7	14
18	REMOVAL OF CARBAMAZEPINE BY ELECTROCOAGULATION: INVESTIGATION OF SOME KEY OPERATIONAL PARAMETERS. Environmental Engineering and Management Journal, 2015, 14, 639-645.	0.6	13

#	Article	IF	CITATIONS
19	PHOTOCATALYTIC OXIDATION OF A HAZARDOUS PHENOLIC COMPOUND OVER TiO2 IN A BATCH SYSTEM. Environmental Engineering and Management Journal, 2016, 15, 1059-1067.	0.6	13
20	Macrolide antibiotics removal using a circulating TiO2-coated paper photoreactor: parametric study and hydrodynamic flow characterization. Water Science and Technology, 2016, 73, 2627-2637.	2.5	12
21	Zn/La Mixed Oxides Prepared by Coprecipitation: Synthesis, Characterization and Photocatalytic Studies. Materials, 2020, 13, 4916.	2.9	12
22	Measurement of pollution levels of N-nitroso compounds of health concern in water using ultra-performance liquid chromatography–tandem mass spectrometry. Chemical Engineering Research and Design, 2017, 108, 7-17.	5.6	11
23	Enhancing the biodegradation efficiency of a emergent refractory water pollutant by a bacterial isolate through a statistical process optimization approach. Chemical Engineering Research and Design, 2021, 148, 1133-1145.	5.6	11
24	Doping Titanium Dioxide with Palladiun for Enhancing thePhotocatalytic Decontamination and Mineralization of a Refractory Water Pollutant. Revista De Chimie (discontinued), 2020, 71, 145-152.	0.4	11
25	Removal of Chromium(VI) from Aqueous Solution Using a Novel Green Magnetic Nanoparticle – Chitosan Adsorbent. Analytical Letters, 2019, 52, 2416-2438.	1.8	10
26	Improving Biodegradation of Clofibric Acid by Trametes pubescens through the Design of Experimental Tools. Microorganisms, 2020, 8, 1243.	3.6	10
27	A highly sensitive liquid chromatography-tandem mass spectrometry method for the analysis of a toxic water disinfection by-product, N-nitrosomethylethylamine. Analytical Methods, 2014, 6, 3231-3234.	2.7	8
28	Urea-Assisted Synthesis of Mesoporous TiO2 Photocatalysts for the Efficient Removal of Clofibric Acid from Water. Materials, 2021, 14, 6035.	2.9	7
29	Impact of \$\$hbox {TiO}_{2}\$\$ TiO 2 –Cation Exchange Resin Composite on the Removal of Ethyl Violet. Arabian Journal for Science and Engineering, 2018, 43, 2451-2463.	3.0	6
30	Biosorption of cationic and anionic dyes using the biomass of <i>Aspergillus parasiticus</i> CBS 100926T. Water Science and Technology, 2021, 83, 622-630.	2.5	6
31	Towards a Better Understanding of the Removal of Carbamazepine by Ankistrodesmus braunii: Investigation of Some Key Parameters. Applied Sciences (Switzerland), 2020, 10, 8034.	2.5	5
32	MAGNETIC NANOPARTICLES USED IN ENVINRONMENTAL ENGINEERING FOR Pb AND Zn REMOVAL. Environmental Engineering and Management Journal, 2016, 15, 1019-1025.	0.6	5
33	Improved Determination of Dichloroacetic and Trichloroacetic Acids in Water by Solid Phase Extraction Followed by Ultra-high Performance Liquid Chromatography–Tandem Mass Spectrometry. Analytical Letters, 2016, 49, 433-443.	1.8	4
34	PHOTODEGRADATION OF RHODAMINE 6G IN PRESENCE OF Ag/TiO2 PHOTOCATALYST., 2018,,.		4
35	CONGO RED REMOVAL FROM AQUEOUS EFFLUENTS BY ADSORPTION ON CHERRY STONES ACTIVATED CARBON. Environmental Engineering and Management Journal, 2020, 19, 247-254.	0.6	4
36	An Eco-Friendly Solution for the Efficient Elimination of Pentoxifylline from Water: An Operational Performance Investigation. Revista De Chimie (discontinued), 2020, 71, 59-69.	0.4	3

#	Article	IF	CITATIONS
37	Photocatalytic degradation efficiency of hazardous macrolide compounds using an external UV-light irradiation slurry reactor. Water Science and Technology, 2020, 82, 695-703.	2.5	2
38	Whole-Cells of Yarrowia lipolytica Applied in "One Pot―Indolizine Biosynthesis. Catalysts, 2020, 10, 629.	3.5	2
39	TiO2/Fly Ash Nanocomposite for Photodegradation of Organic Pollutant. , 2020, , 1-24.		2
40	ASYMMETRIC CELLULOSE ACETATE MEMBRANES USED IN SEPARATION APPLICATIONS. Journal of Applied Life Sciences and Environment, 2021, 185, 70-76.	0.3	1
41	Remediation of Diethyl Phthalate in Aqueous Effluents with TiO2-Supported RhO Nanoparticles as Multicatalytic Materials. Catalysts, 2021, 11, 1166.	3.5	1
42	Excellent ambient oxidation and mineralization of an emerging water pollutant using Pd-doped TiO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow> <mml:mn>2</mml:mn> </mml:msub></mml:math> photocatalyst and UV-A irradiation. Comptes Rendus Chimie, 2022, 25, 203-215.	0.5	1
43	Optimization of Different Key Culture Conditions for Enhanced Biodegradation of a Refractory Emerging Pollutant by a Bacterial Isolate Through a Statistical Approach. Advances in Science, Technology and Innovation, 2018, , 259-260.	0.4	0
44	TiO2/Fly Ash Nanocomposite for Photodegradation of Organic Pollutant., 2021,, 3051-3074.		0
45	The photocatalytic degradation of bezacryl yellow in a presence of TiO _{2 - hydrodynamic contribution. International Journal of Environment and Waste Management, 2019, 23, 370.}	0.3	0
46	PACKED COLUMN SIMULATION FOR CO2 CHEMISORPTION IN ACTIVATED SOLUTIONS. Environmental Engineering and Management Journal, 2020, 19, 325-333.	0.6	O