Undrakh L Mishigdorzhiyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6158736/publications.pdf

Version: 2024-02-01

20 papers

61 citations

1937685 4 h-index 7 g-index

20 all docs

20 docs citations

times ranked

20

29 citing authors

#	Article	IF	CITATIONS
1	A study of thermocycling boroaluminizing of carbon steels. Metal Science and Heat Treatment, 2012, 53, 592-597.	0.6	14
2	Influence of thermocycle boroaluminising on strength of steel C30. Surface Engineering, 2014, 30, 129-133.	2.2	14
3	Microstructure and Wear Behavior of Tungsten Hot-Work Steel after Boriding and Boroaluminizing. Lubricants, 2020, 8, 26.	2.9	7
4	Improvement of the heat resistance of carbon steels by thermocycling thermochemical treatment with self-protective pastes based on boron carbide and aluminum. IOP Conference Series: Materials Science and Engineering, 2016, 116, 012036.	0.6	4
5	The Influence of Boroaluminizing Temperature on Microstructure and Wear Resistance in Low-Carbon Steels. Materials Performance and Characterization, 2018, 7, 20170074.	0.3	4
6	Formation of Coatings Based on Boron and Aluminum on the Surface of Carbon Steels by Electron Beam Alloying. Metal Working and Material Science, 2018, 20, 87-99.	0.3	4
7	Microstructure and Wear Resistance of Hot-Work Tool Steels after Electron Beam Surface Alloying with B4C and Al. Lubricants, 2022, 10, 90.	2.9	4
8	Thermocyclic Boroaluminizing of Low Carbon Steels in Pastes. Materials Performance and Characterization, 2017, 6, 531-545.	0.3	3
9	The Study of Boroaluminizing in Đastes under Thermocycling and Laser Heating. Advanced Materials Research, 0, 1040, 907-911.	0.3	2
	Research, 0, 1040, 507-511.		
10	Boroaluminized Carbon Steel., 2016, , 346-357.		2
		0.6	2
10	Boroaluminized Carbon Steel., 2016, , 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684,	0.6	
10	Boroaluminized Carbon Steel., 2016, , 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684, 012003. Modification of the surface of steel 3Kh2V8F by application B-Al-coatings by methods of thermal-chemical treatment and electron-beam processing. IOP Conference Series: Materials Science		1
10 11 12	Boroaluminized Carbon Steel., 2016, , 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684, 012003. Modification of the surface of steel 3Kh2V8F by application B-Al-coatings by methods of thermal-chemical treatment and electron-beam processing. IOP Conference Series: Materials Science and Engineering, 2020, 759, 012017.		1
10 11 12 13	Boroaluminized Carbon Steel., 2016,, 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684, 012003. Modification of the surface of steel 3Kh2V8F by application B-Al-coatings by methods of thermal-chemical treatment and electron-beam processing. IOP Conference Series: Materials Science and Engineering, 2020, 759, 012017. Surface Processing Technology in Improving Operational Properties of Hot-Work Tool Steel., 0,,	0.6	1 1
10 11 12 13	Boroaluminized Carbon Steel., 2016, , 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684, 012003. Modification of the surface of steel 3Kh2V8F by application B-Al-coatings by methods of thermal-chemical treatment and electron-beam processing. IOP Conference Series: Materials Science and Engineering, 2020, 759, 012017. Surface Processing Technology in Improving Operational Properties of Hot-Work Tool Steel., 0, , . The impact of basic boroaluminizing factors on diffusion layer thickness in low-carbon steels and its mathematical modeling. IOP Conference Series: Materials Science and Engineering, 2018, 411, 012049. The study of surface roughness after thermal-chemical treatment and subsequent grinding. Journal	0.6	1 1 1 0
10 11 12 13 14	Boroaluminized Carbon Steel., 2016,, 346-357. The neural networks application in predicting the geometrical parameters of coatings formed on a steel substrate by laser alloying. IOP Conference Series: Materials Science and Engineering, 2019, 684, 012003. Modification of the surface of steel 3Kh2V8F by application B-Al-coatings by methods of thermal-chemical treatment and electron-beam processing. IOP Conference Series: Materials Science and Engineering, 2020, 759, 012017. Surface Processing Technology in Improving Operational Properties of Hot-Work Tool Steel., 0,, The impact of basic boroaluminizing factors on diffusion layer thickness in low-carbon steels and its mathematical modeling. IOP Conference Series: Materials Science and Engineering, 2018, 411, 012049. The study of surface roughness after thermal-chemical treatment and subsequent grinding. Journal of Physics: Conference Series, 2020, 1582, 012087. The structure, phase composition, and residual stresses of diffusion boride layers formed by thermal-chemical treatment on the die steel surface. Metal Working and Material Science, 2021, 23,	0.6	1 1 0 0

#	#	Article	IF	CITATIONS
1	L9	Thermodynamic aspects of electron-beam surface modification of low-carbon steel. IOP Conference Series: Materials Science and Engineering, 2021, 1198, 012009.	0.6	0
2	20	Influence of boriding and aluminizing processes on the structure and properties of low-carbon steels. Metal Working and Material Science, 2022, 24, 91-101.	0.3	O