
Petr Skalka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6158468/publications.pdf Version: 2024-02-01

DETD SVALVA

#	Article	IF	CITATIONS
1	Determination of Mechanical and Fracture Properties of Silicon Single Crystal from Indentation Experiments and Finite Element Modelling. Materials, 2021, 14, 6864.	2.9	1
2	A novel multiscale approach to brittle fracture of nano/microâ€sized components. Fatigue and Fracture of Engineering Materials and Structures, 2020, 43, 1630-1645.	3.4	9
3	Thermal cycling effect on the phase stability and fracture resistance of synthetic barium/magnesium aluminosilicate systems. Ceramics International, 2020, 46, 24129-24136.	4.8	3
4	Factors governing the dimensional accuracy and fracture modes under compression of regular and shifted orthogonal scaffolds. Journal of the European Ceramic Society, 2020, 40, 4923-4931.	5.7	8
5	Ab initio aided strain gradient elasticity theory in prediction of nanocomponent fracture. Mechanics of Materials, 2019, 136, 103074.	3.2	9
6	Estimation of the effective elastic constants of bone scaffolds fabricated by direct ink writing. Journal of the European Ceramic Society, 2019, 39, 1586-1594.	5.7	18
7	Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with a crack at the TGO/bond-coat interface. Surface and Coatings Technology, 2018, 337, 321-334.	4.8	40
8	Crack bridging modelling in Bioglass ® based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. Mechanics of Materials, 2017, 110, 16-28.	3.2	5
9	Failure analysis of massively failed compressed air cartridge. Engineering Failure Analysis, 2017, 82, 776-782.	4.0	2
10	Applicability of the Critical Energy Release Rate for Predicting the Growth of a Crack in Nanoscale Materials Applying the Strain Gradient Elasticity Theory. Key Engineering Materials, 2017, 754, 185-188.	0.4	2
11	Finite element simulation of stresses in a plasma-sprayed thermal barrier coating with an irregular top-coat/bond-coat interface. Surface and Coatings Technology, 2016, 304, 574-583.	4.8	29
12	Novel approach to FE solution of crack problems in the Laplacian-based gradient elasticity. Mechanics of Materials, 2016, 95, 28-48.	3.2	9
13	Plasma-sprayed thermal barrier coatings: numerical study on damage localization and evolution. Frattura Ed Integrita Strutturale, 2016, 10, 322-329.	0.9	0
14	Stability of plasma-sprayed thermal barrier coatings: The role of the waviness of the bond coat and the thickness of the thermally grown oxide layer. Surface and Coatings Technology, 2015, 274, 26-36.	4.8	22
15	Bending fatigue failure of atmospheric-plasma-sprayed CoNiCrAlY+YSZ thermal barrier coatings. International Journal of Fatigue, 2015, 70, 186-195.	5.7	26
16	Crack Bridging Modelling in Bioglass® Based Scaffolds Using Gradient Elasticity Theory. Key Engineering Materials, 0, 665, 105-108.	0.4	0
17	Influence of the Ceramic Foam Structure Irregularity on the Tensile Response. Solid State Phenomena, 0, 258, 161-164.	0.3	2
18	Computational Analysis of Crack Bridging in Bioglass [®] -Based Porous Scaffolds by Using Polymer Coatings. Solid State Phenomena, 0, 258, 325-328.	0.3	0

#	Article	IF	CITATIONS
19	Prediction of the Critical Energy Release Rate of Nanostructured Solids Using the Laplacian Version of the Strain Gradient Elasticity Theory. Key Engineering Materials, 0, 774, 447-452.	0.4	1
20	The Influence of Surface Dipping and Bulk Filling Agents on Properties of High-Speed Grinding Wheels: Materialographic-Based Numerical Modelling. Defect and Diffusion Forum, 0, 405, 43-47.	0.4	0