
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6158392/publications.pdf Version: 2024-02-01

IÃ1/1 DI LADVET

#	Article	IF	CITATIONS
1	Amyotrophic Lateral Sclerosis After Exposure to Manganese from Traditional Medicine Procedures in Kenya. Biological Trace Element Research, 2021, 199, 3618-3624.	3.5	13
2	Lithium ions display weak interaction with amyloid-beta (Aβ) peptides and have minor effects on their aggregation. Acta Biochimica Polonica, 2021, 68, 169-179.	0.5	4
3	The amyloid-inhibiting NCAM-PrP peptide targets Al ² peptide aggregation in membrane-mimetic environments. IScience, 2021, 24, 102852.	4.1	15
4	Mercury and Alzheimer's Disease: Hg(II) Ions Display Specific Binding to the Amyloid-β Peptide and Hinder Its Fibrillization. Biomolecules, 2020, 10, 44.	4.0	26
5	Designed Cell-Penetrating Peptide Inhibitors of Amyloid-beta Aggregation and Cytotoxicity. Cell Reports Physical Science, 2020, 1, 100014.	5.6	47
6	Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation–inert complex. Journal of Biological Chemistry, 2020, 295, 7224-7234.	3.4	26
7	Metal binding to the amyloid-β peptides in the presence of biomembranes: potential mechanisms of cell toxicity. Journal of Biological Inorganic Chemistry, 2019, 24, 1189-1196.	2.6	49
8	Effects of <i>in vivo</i> conditions on amyloid aggregation. Chemical Society Reviews, 2019, 48, 3946-3996.	38.1	148
9	Amyloidogenic Nanoplaques in Blood Serum of Patients with Alzheimer's Disease Revealed by Time-Resolved Thioflavin T Fluorescence Intensity Fluctuation Analysis. Journal of Alzheimer's Disease, 2019, 68, 571-582.	2.6	21
10	Copper ions induce dityrosine-linked dimers in human but not in murine islet amyloid polypeptide (IAPP/amylin). Biochemical and Biophysical Research Communications, 2019, 510, 520-524.	2.1	15
11	Amyloid-β Peptide Interactions with Amphiphilic Surfactants: Electrostatic and Hydrophobic Effects. ACS Chemical Neuroscience, 2018, 9, 1680-1692.	3.5	51
12	The Neuronal Tau Protein Blocks <i>in Vitro</i> Fibrillation of the Amyloid-β (Aβ) Peptide at the Oligomeric Stage. Journal of the American Chemical Society, 2018, 140, 8138-8146.	13.7	49
13	Shortfall of B3LYP in Reproducing NMR <i>J</i> _{CH} Couplings in Some Isomeric Epoxy Structures with Strong Stereoelectronic Effects: A Benchmark Study on DFT Functionals. ChemPhysChem, 2018, 19, 631-642.	2.1	12
14	The Amyloidâ€Î² Peptide in Amyloid Formation Processes: Interactions with Blood Proteins and Naturally Occurring Metal Ions. Israel Journal of Chemistry, 2017, 57, 674-685.	2.3	21
15	Alzheimer's disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Scientific Reports, 2017, 7, 14423.	3.3	81
16	Specific Binding of Cu(II) Ions to Amyloid-Beta Peptides Bound to Aggregation-Inhibiting Molecules or SDS Micelles Creates Complexes that Generate Radical Oxygen Species. Journal of Alzheimer's Disease, 2016, 54, 971-982.	2.6	34
17	Characterization of Mn(II) ion binding to the amyloid-β peptide in Alzheimerâ¿s disease. Journal of Trace Elements in Medicine and Biology, 2016, 38, 183-193.	3.0	60
18	lonic Strength Modulation of the Free Energy Landscape of Aβ ₄₀ Peptide Fibril Formation. Journal of the American Chemical Society, 2016, 138, 6893-6902.	13.7	80

#	Article	IF	CITATIONS
19	Heterogeneity and Turnover of Intermediates during Amyloid-β (Aβ) Peptide Aggregation Studied by Fluorescence Correlation Spectroscopy. Biochemistry, 2015, 54, 7203-7211.	2.5	38
20	The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade. Acta Neuropathologica, 2014, 127, 507-522.	7.7	108
21	Asymmetric synthesis of the 2,2,3-trisubstituted cyclopentanone, D-ring fragment of 9,11-secosterols. Tetrahedron, 2014, 70, 6723-6727.	1.9	3
22	The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. Journal of Biological Inorganic Chemistry, 2014, 19, 623-634.	2.6	88
23	An NMR and MD Modeling Insight into Nucleation of 1,2-Alkanediols: Selective Crystallization of Lipase-Catalytically Resolved Enantiomers from the Reaction Mixtures. Journal of Organic Chemistry, 2013, 78, 12795-12801.	3.2	6
24	The Transcriptional Repressor Domain of Cli3 Is Intrinsically Disordered. PLoS ONE, 2013, 8, e76972.	2.5	5
25	Specific Binding of a \hat{l}^2 -Cyclodextrin Dimer to the Amyloid \hat{l}^2 Peptide Modulates the Peptide Aggregation Process. Biochemistry, 2012, 51, 4280-4289.	2.5	49
26	Secondary structure conversions of Alzheimer's Aβ(1–40) peptide induced by membraneâ€mimicking detergents. FEBS Journal, 2008, 275, 5117-5128.	4.7	98
27	Making a single-chain four-helix bundle for redox chemistry studies. Protein Engineering, Design and Selection, 2008, 21, 645-652.	2.1	9
28	Maximum entropy reconstruction of joint φ, Ï^-distribution with a coil-library prior: the backbone conformation of the peptide hormone motilin in aqueous solution from φ and Ï^-dependent J-couplings. Journal of Biomolecular NMR, 2007, 38, 107-123.	2.8	7
29	Positioning of the Alzheimer Aβ(1–40) peptide in SDS micelles using NMR and paramagnetic probes. Journal of Biomolecular NMR, 2007, 39, 63-72.	2.8	138
30	NMR Solution Structure of the Peptide Fragment 1â^'30, Derived from Unprocessed Mouse Doppel Protein, in DHPC Micellesâ€. Biochemistry, 2006, 45, 159-166.	2.5	19
31	Characterization of the antioxidative activity of novel nontoxic neuropeptides by using capillary electrophoresis. Electrophoresis, 2006, 27, 2582-2589.	2.4	9
32	15N relaxation study of the amyloid β-peptide: structural propensities and persistence length. Magnetic Resonance in Chemistry, 2006, 44, S114-S121.	1.9	89
33	The Alzheimer βâ€peptide shows temperatureâ€dependent transitions between leftâ€handed 3 ₁ â€helix, βâ€strand and random coil secondary structures. FEBS Journal, 2005, 272, 3938-3949.	4.7	121
34	Limited Variations in15N CSA Magnitudes and Orientations in Ubiquitin Are Revealed by Joint Analysis of Longitudinal and Transverse NMR Relaxation. Journal of the American Chemical Society, 2005, 127, 1995-2005.	13.7	38
35	Proton magnetic resonance spectroscopy in neuroblastoma: Current status, prospects and limitations. Cancer Letters, 2005, 228, 247-255.	7.2	24
36	Monitoring intracellular metabolites in neuroblastoma with ¹ H NMR spectroscopy: effects of growth factor withdrawal and modulation of lipid metabolism. Spectroscopy, 2004, 18, 123-132.	0.8	1

#	Article	IF	CITATIONS
37	Predicting Resistance or Response to Chemotherapy by Proton Magnetic Resonance Spectroscopy in Neuroblastoma. Journal of the National Cancer Institute, 2004, 96, 1457-1466.	6.3	39
38	Two-Site Binding of β-Cyclodextrin to the Alzheimer Aβ(1â~'40) Peptide Measured with Combined PFG-NMR Diffusion and Induced Chemical Shiftsâ€. Biochemistry, 2004, 43, 6261-6269.	2.5	72
39	Unique Physicochemical Profile of β-Amyloid Peptide Variant Aβ1–40E22G Protofibrils: Conceivable Neuropathogen in Arctic Mutant Carriers. Journal of Molecular Biology, 2004, 339, 145-159.	4.2	74
40	A left-handed 31 helical conformation in the Alzheimer Al²(12-28) peptide. FEBS Letters, 2003, 555, 371-374.	2.8	55
41	Cell membrane translocation of the N-terminal (1–28) part of the prion protein. Biochemical and Biophysical Research Communications, 2002, 299, 85-90.	2.1	83
42	13C-1H NMR Relaxation and Fluorescence Anisotropy Decay Study of Tyrosine Dynamics in Motilin. Biophysical Journal, 2002, 83, 2812-2825.	0.5	12
43	Translational diffusion measured by PFG-NMR on full length and fragments of the Alzheimer Aβ(1-40) peptide. Determination of hydrodynamic radii of random coil peptides of varying length. Magnetic Resonance in Chemistry, 2002, 40, S89-S97.	1.9	128
44	Secondary Structure and Position of the Cell-Penetrating Peptide Transportan in SDS Micelles As Determined by NMR. Biochemistry, 2001, 40, 3141-3149.	2.5	102
45	Micellar Systems as Solvents in Peptide and Protein Structure Determination. Methods in Enzymology, 2001, 339, 271-285.	1.0	86
46	Accurate Measurement of Translational Diffusion Coefficients: A Practical Method to Account for Nonlinear Gradients. Journal of Magnetic Resonance, 2001, 148, 343-348.	2.1	89
47	Reversible Random Coil to β-Sheet Transition and the Early Stage of Aggregation of the Aβ(12â^'28) Fragment from the Alzheimer Peptide. Journal of the American Chemical Society, 2000, 122, 4261-4268.	13.7	107
48	Structural Characterization of Inter-α-inhibitor. Journal of Biological Chemistry, 1999, 274, 298-304.	3.4	47
49	Quantitative estimation of magnitude and orientation of the CSA tensor from field dependence of longitudinal NMR relaxation rates. Journal of Biomolecular NMR, 1999, 15, 27-37.	2.8	17
50	Regulation of GTPase and adenylate cyclase activity by amyloid β-peptide and its fragments in rat brain tissue. Brain Research, 1999, 850, 179-188.	2.2	23
51	Three-Dimensional Structure and Position of Porcine Motilin in Sodium Dodecyl Sulfate Micelles Determined by1H NMRâ€. Biochemistry, 1997, 36, 8153-8163.	2.5	65
52	Selective Transient Heteronuclear Cross Relaxation in a Selectively13Cα-Labeled Peptide. Journal of Magnetic Resonance, 1997, 124, 97-103.	2.1	2
53	Spectral-Density Mapping of13Cα–1HαVector Dynamics Using Dipolar Relaxation Rates Measured at Several Magnetic Fields. Journal of Magnetic Resonance Series B, 1996, 111, 23-30.	1.6	9
54	Phase-Sensitive Two-Dimensional Heteronuclear Zero- and Double-Quantum-Coherence Spectroscopy. Journal of Magnetic Resonance Series B, 1996, 112, 240-244.	1.6	12

#	Article	IF	CITATIONS
55	Mapping of the spectral density function of a C??H? bond vector from NMR relaxation rates of a 13C-labelled ?-carbon in motilin. Journal of Biomolecular NMR, 1995, 5, 133-46.	2.8	14
56	Solution structure by 1H and dynamics by natural abundance 13C NMR of a receptor recognising peptide derived from a C-terminal fragment of neuropeptide Y. Journal of Biomolecular NMR, 1994, 4, 653-672.	2.8	17
57	13C and 15N NMR and time-resolved fluorescence depolarization study of bovine carbonic anhydrase-4-methylbenzenesulfonamide complex. FEBS Journal, 1989, 186, 287-290.	0.2	8