Xiao Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6157591/publications.pdf

Version: 2024-02-01

136950 223800 3,084 45 32 46 citations h-index g-index papers 46 46 46 1108 times ranked all docs docs citations citing authors

#	Article	IF	CITATIONS
1	Triboelectric Nanogenerators for Self-Powered Breath Monitoring. ACS Applied Energy Materials, 2022, 5, 3952-3965.	5.1	39
2	Computational investigation of ultrasound induced electricity generation via a triboelectric nanogenerator. Nano Energy, 2022, 91, 106656.	16.0	26
3	A Personalized Acoustic Interface for Wearable Human–Machine Interaction. Advanced Functional Materials, 2022, 32, 2109430.	14.9	69
4	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing. Small Methods, 2022, 6, e2101051.	8.6	61
5	Ultrafast and Selective Nanofiltration Enabled by Graphene Oxide Membranes with Unzipped Carbon Nanotube Networks. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1850-1860.	8.0	60
6	Recent Advances on Dualâ€Band Electrochromic Materials and Devices. Advanced Functional Materials, 2022, 32, .	14.9	81
7	Simultaneous Biomechanical and Biochemical Monitoring for Self-Powered Breath Analysis. ACS Applied Materials & Interfaces, 2022, 14, 7301-7310.	8.0	86
8	Electronic Textiles for Wearable Point-of-Care Systems. Chemical Reviews, 2022, 122, 3259-3291.	47.7	316
9	Thermogalvanic hydrogels for self-powered temperature monitoring in extreme environments. Journal of Materials Chemistry C, 2022, 10, 13789-13796.	5.5	19
10	MXeneâ€Sponge Based Highâ€Performance Piezoresistive Sensor for Wearable Biomonitoring and Realâ€Time Tactile Sensing (Small Methods 2/2022). Small Methods, 2022, 6, .	8.6	4
11	A Deepâ€Learningâ€Assisted Onâ€Mask Sensor Network for Adaptive Respiratory Monitoring. Advanced Materials, 2022, 34, e2200252.	21.0	72
12	Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays. ACS Nano, 2022, 16, 6734-6743.	14.6	49
13	Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging. Arabian Journal of Chemistry, 2022, 15, 103856.	4.9	13
14	Graphene Oxide Nanofiltration Membrane Based on Three-Dimensional Size-Controllable Metal–Organic Frameworks for Water Treatment. ACS Applied Nano Materials, 2022, 5, 5196-5207.	5.0	42
15	Recent Advances in Graphene Oxide Membranes for Nanofiltration. ACS Applied Nano Materials, 2022, 5, 3121-3145.	5.0	42
16	Advances in graphene oxide membranes for water treatment. Nano Research, 2022, 15, 6636-6654.	10.4	76
17	Flexible Prussian Blueâ€Au Fibers as Robust Peroxidase – Like Nanozymes for Wearable Hydrogen Peroxide and Uric Acid Monitoring. Electroanalysis, 2022, 34, 1763-1771.	2.9	10
18	Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter, 2022, 5, 1342-1345.	10.0	29

#	Article	IF	CITATIONS
19	Bioinspired Anisotropic Slippery Cilia for Stiffness-Controllable Bubble Transport. ACS Nano, 2022, 16, 9348-9358.	14.6	19
20	Wearable Pressure Sensors for Pulse Wave Monitoring (Adv. Mater. 21/2022). Advanced Materials, 2022, 34, .	21.0	5
21	Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Advanced Functional Materials, 2022, 32, .	14.9	51
22	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	21.0	63
23	A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy, 2022, 101, 107572.	16.0	21
24	Wearable triboelectric nanogenerators for heart rate monitoring. Chemical Communications, 2021, 57, 5871-5879.	4.1	64
25	Bioinspired Two-Dimensional Structure with Asymmetric Wettability Barriers for Unidirectional and Long-Distance Gas Bubble Delivery Underwater. Nano Letters, 2021, 21, 2117-2123.	9.1	43
26	Leveraging triboelectric nanogenerators for bioengineering. Matter, 2021, 4, 845-887.	10.0	192
27	All-in-one conformal epidermal patch for multimodal biosensing. Matter, 2021, 4, 1102-1105.	10.0	36
28	Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry, 2021, 3, 279-290.	8.5	100
29	Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors. Small, 2021, 17, e2100956.	10.0	51
30	Wearable Bioelectronics: Airâ€Stable Conductive Polymer Ink for Printed Wearable Microâ€Supercapacitors (Small 25/2021). Small, 2021, 17, 2170128.	10.0	2
31	Triboelectric Nanogenerators for Selfâ€Powered Wound Healing. Advanced Healthcare Materials, 2021, 10, e2100975.	7.6	64
32	Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS Nano, 2021, 15, 13178-13187.	14.6	128
33	Learning from nature for healthcare, energy, and environment. Innovation(China), 2021, 2, 100135.	9.1	11
34	Advances in Triboelectric Nanogenerators for Selfâ€Powered Regenerative Medicine. Advanced Functional Materials, 2021, 31, 2105169.	14.9	54
35	Triboelectric bending sensor based smart glove towards intuitive multi-dimensional human-machine interfaces. Nano Energy, 2021, 89, 106330.	16.0	83
36	Electrospinning nanofibers and nanomembranes for oil/water separation. Journal of Materials Chemistry A, 2021, 9, 21659-21684.	10.3	121

XIAO XIAO

#	ARTICLE	IF	CITATION
37	Soft fibers with magnetoelasticity for wearable electronics. Nature Communications, 2021, 12, 6755.	12.8	150
38	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	10.3	145
39	Machine-Learning-Aided Self-Powered Assistive Physical Therapy Devices. ACS Nano, 2021, 15, 18633-18646.	14.6	53
40	Advances in 4Dâ€printed physiological monitoring sensors. Exploration, 2021, 1, .	11.0	25
41	Polymer nanotube membranes synthesized via liquid deposition in anodic alumina. Colloids and Interface Science Communications, 2020, 39, 100334.	4.1	8
42	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	9.1	231
43	Bioinspired Slippery Cone for Controllable Manipulation of Gas Bubbles in Low-Surface-Tension Environment. ACS Nano, 2019, 13, 4083-4090.	14.6	68
44	Efficient separation of immiscible oil/water mixtures using a perforated lotus leaf. Green Chemistry, 2019, 21, 6579-6584.	9.0	46
45	Bioinspired Pressure-Tolerant Asymmetric Slippery Surface for Continuous Self-Transport of Gas Bubbles in Aqueous Environment. ACS Nano, 2018, 12, 2048-2055.	14.6	155