James K Kirklin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6157473/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seventh INTERMACS annual report: 15,000 patients and counting. Journal of Heart and Lung Transplantation, 2015, 34, 1495-1504.	0.3	1,227
2	Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. Journal of Heart and Lung Transplantation, 2017, 36, 1080-1086.	0.3	1,049
3	Sixth INTERMACS annual report: A 10,000-patient database. Journal of Heart and Lung Transplantation, 2014, 33, 555-564.	0.3	768
4	The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Annals of Thoracic Surgery, 2021, 111, 778-792.	0.7	406
5	The Society of Thoracic Surgeons Intermacs database annual report: Evolving indications, outcomes, and scientific partnerships. Journal of Heart and Lung Transplantation, 2019, 38, 114-126.	0.3	349
6	The Society of Thoracic Surgeons Intermacs 2019 Annual Report: The Changing Landscape of Devices and Indications. Annals of Thoracic Surgery, 2020, 109, 649-660.	0.7	323
7	Long-term mechanical circulatory support (destination therapy): OnÂtrack to compete with heart transplantation?. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 584-603.	0.4	229
8	The use of the Berlin Heart EXCOR in patients with functional single ventricle. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, 697-705.	0.4	198
9	The Society of Thoracic Surgeons Intermacs Database Annual Report: Evolving Indications, Outcomes, and Scientific Partnerships. Annals of Thoracic Surgery, 2019, 107, 341-353.	0.7	177
10	Honoring 50 Years of Clinical Heart Transplantation in <i>Circulation</i> . Circulation, 2018, 137, 71-87.	1.6	154
11	Outcomes of children implanted with ventricular assist devices in the United States: First analysis of the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). Journal of Heart and Lung Transplantation, 2016, 35, 578-584.	0.3	151
12	INTERMACS Analysis of Stroke During Support With Continuous-Flow LeftÂVentricular Assist Devices. JACC: Heart Failure, 2017, 5, 703-711.	1.9	134
13	Adverse events in children implanted with ventricular assist devices in the United States:ÂData from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). Journal of Heart and Lung Transplantation, 2016, 35, 569-577.	0.3	112
14	Outcomes of pediatric patients supported with continuous-flow ventricular assist devices: A report from the Pediatric Interagency Registry for Mechanical Circulatory Support (PediMACS). Journal of Heart and Lung Transplantation, 2016, 35, 585-590.	0.3	112
15	Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry. Journal of Heart and Lung Transplantation, 2018, 37, 685-691.	0.3	111
16	An essential role for Fas ligand in transplantation tolerance induced by donor bone marrow. Nature Medicine, 1998, 4, 333-335.	15.2	101
17	Updated definitions of adverse events for trials and registries of mechanical circulatory support: A consensus statement of the mechanical circulatory support academic research consortium. Journal of Heart and Lung Transplantation, 2020, 39, 735-750.	0.3	101
18	First Annual IMACS Report: A global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support. Journal of Heart and Lung Transplantation, 2016, 35, 407-412.	0.3	98

#	Article	IF	CITATIONS
19	Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. Journal of Heart and Lung Transplantation, 2013, 32, 1205-1213.	0.3	94
20	Early Right Ventricular Assist Device Use in Patients Undergoing Continuous-Flow Left Ventricular Assist Device Implantation. Circulation: Heart Failure, 2017, 10, .	1.6	89
21	Twelfth Interagency Registry for Mechanically Assisted Circulatory Support Report: Readmissions After Left Ventricular Assist Device. Annals of Thoracic Surgery, 2022, 113, 722-737.	0.7	87
22	Concomitant aortic valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: An INTERMACS database analysis. Journal of Heart and Lung Transplantation, 2015, 34, 797-805.	0.3	80
23	Ventricular Assist Device Support as a BridgeÂto Transplantation in PediatricÂPatients. Journal of the American College of Cardiology, 2018, 72, 402-415.	1.2	75
24	Multiplane Transesophageal Echocardiographic Imaging and Threeâ€Dimensional Reconstruction. Echocardiography, 1992, 9, 667-676.	0.3	73
25	Mechanical Circulatory Support. Circulation: Heart Failure, 2008, 1, 200-205.	1.6	73
26	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Heart and Lung Transplantation, 2020, 39, 187-219.	0.3	71
27	The modern Fontan operation shows no increase in mortality out to 20 years: A new paradigm. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 2517-2524.e1.	0.4	70
28	Overall quality of life improves to similar levels after mechanical circulatory support regardless of severity of heart failure before implantation. Journal of Heart and Lung Transplantation, 2014, 33, 412-421.	0.3	68
29	Fontan Patient Survival After Pediatric Heart Transplantation Has Improved in the Current Era. Annals of Thoracic Surgery, 2017, 103, 1315-1320.	0.7	65
30	Concomitant mitral valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: An INTERMACS database analysis. Journal of Heart and Lung Transplantation, 2018, 37, 79-88.	0.3	64
31	Major advantages and critical challenge for the proposed United States heart allocation system. Journal of Heart and Lung Transplantation, 2016, 35, 547-549.	0.3	63
32	Fifth Annual Pediatric Interagency Registry for Mechanical Circulatory Support (Pedimacs) Report. Annals of Thoracic Surgery, 2021, 112, 1763-1774.	0.7	63
33	Improved Detection of CardiacÂAllograftÂVasculopathy. Journal of the American College of Cardiology, 2015, 66, 547-557.	1.2	62
34	A multicenter analysis of clinical hemolysis in patients supported with durable, long-term left ventricular assist device therapy. Journal of Heart and Lung Transplantation, 2015, 34, 701-709.	0.3	60
35	Limited Utility of Tricuspid Valve Repair at the Time of Left Ventricular Assist Device Implantation. Annals of Thoracic Surgery, 2016, 101, 2168-2174.	0.7	58
36	INTERMACS profiles and modifiers: Heterogeneity of patient classification and the impact of modifiers on predicting patient outcome. Journal of Heart and Lung Transplantation, 2016, 35, 440-448.	0.3	57

#	Article	IF	CITATIONS
37	lmpact of Center Left Ventricular AssistÂDevice Volume on OutcomesÂAfterÂImplantation. JACC: Heart Failure, 2017, 5, 691-699.	1.9	54
38	A time-related parametric risk factor analysis for postoperative atrial fibrillation after heart surgery. Journal of Thoracic and Cardiovascular Surgery, 2015, 149, 886-892.	0.4	50
39	Mechanical circulatory support therapy as a bridge to transplant or recovery (new advances). Current Opinion in Cardiology, 2006, 21, 120-126.	0.8	49
40	Post-Heart Transplant Diastolic Dysfunction Is a Risk Factor for Mortality. Journal of the American College of Cardiology, 2007, 50, 1064-1069.	1.2	47
41	Fulminant myocarditis as a late sequela of DRESS: Two cases. Journal of the American Academy of Dermatology, 2011, 65, 889-890.	0.6	43
42	American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 865-896.	0.4	41
43	Bloodstream infections in mechanical circulatory support device recipients in the International Society of Heart and Lung Transplantation Mechanically Assisted Circulation Support Registry: Epidemiology, risk factors, and mortality. Journal of Heart and Lung Transplantation, 2018, 37, 1013-1020.	0.3	37
44	The Optimal Timing of Stage-2-Palliation After the Norwood Operation. Annals of Thoracic Surgery, 2018, 105, 193-199.	0.7	35
45	Ventricular Assist Device in AcuteÂMyocardial Infarction. Journal of the American College of Cardiology, 2016, 67, 1871-1880.	1.2	33
46	Statin therapy is not associated with improved outcomes after heart transplantation in children and adolescents. Journal of Heart and Lung Transplantation, 2016, 35, 457-465.	0.3	29
47	Intervention for arch obstruction after the Norwood procedure: Prevalence, associated factors, and practice variability. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 684-695.e8.	0.4	29
48	Have risk factors for mortality after heart transplantation changed over time? Insights from 19 years of Cardiac Transplant Research Database study. Journal of Heart and Lung Transplantation, 2014, 33, 1304-1311.	0.3	28
49	ls the "Perfect Fontan―operation routinely achievable in the modern era?. Cardiology in the Young, 2008, 18, 328-336.	0.4	27
50	Contemporary Left Ventricular Assist Device Outcomes in an Aging Population. Journal of the American College of Cardiology, 2021, 78, 883-894.	1.2	27
51	The Impact of a Defensive Response Set on the Relationship Between MMPI and Cognitive Tests Among Heart Transplant Candidates. Assessment, 1997, 4, 365-375.	1.9	24
52	Heart Transplant Candidates: A Neuropsychological Descriptive Database. Journal of Clinical Psychology in Medical Settings, 1997, 4, 343-355.	0.8	23
53	Selection of patients and techniques of heart transplantation. Surgical Clinics of North America, 2004, 84, 257-287.	0.5	23
54	Single-center experience with extracorporeal photopheresis in pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2014, 33, 624-628.	0.3	23

#	Article	IF	CITATIONS
55	Surgical Treatment of Prosthetic Valve Endocarditis with Homograft Aortic Valve Replacement. Journal of Cardiac Surgery, 1989, 4, 340-347.	0.3	22
56	Advances in mechanical assist devices and artificial hearts for children. Current Opinion in Pediatrics, 2015, 27, 597-603.	1.0	22
57	Duration of Heart Failure Is an Important Predictor of Outcomes After Mechanical Circulatory Support. Circulation: Heart Failure, 2015, 8, 953-959.	1.6	21
58	High Right Atrial Pressure and Low Pulse Pressure Predict Gastrointestinal Bleeding in Patients With Left Ventricular Assist Device. Journal of Cardiac Failure, 2018, 24, 487-493.	0.7	21
59	Gender and Racial Disparities in Survival After Surgery Among Papillary and Patients With Follicular Thyroid Cancer: A 45-Year Experience. Clinical Medicine Insights: Endocrinology and Diabetes, 2019, 12, 117955141986619.	1.0	20
60	Implantation of the HeartWare HVAD in a Child After a Recent Thromboembolic Stroke. Annals of Thoracic Surgery, 2012, 93, 977-978.	0.7	19
61	Mechanical Circulatory Support: Strategies and Outcomes in Pediatric Congenital Heart Disease. Pediatric Cardiac Surgery Annual, 2014, 17, 62-68.	0.5	19
62	Impact of routine surveillance biopsy intensity on the diagnosis of moderate to severe cellular rejection and survival after pediatric heart transplantation. Pediatric Transplantation, 2018, 22, e13131.	0.5	19
63	Risk stratification to determine the impact of induction therapy on survival, rejection and adverse events after pediatric heart transplant: A multi-institutional study. Journal of Heart and Lung Transplantation, 2018, 37, 458-466.	0.3	19
64	Why Is Hyperparathyroidism Underdiagnosed and Undertreated in Older Adults?. Clinical Medicine Insights: Endocrinology and Diabetes, 2018, 11, 117955141881591.	1.0	19
65	Failure to Diagnose and Treat Hyperparathyroidism Among Patients with Hypercalcemia: Opportunities for Intervention at the Patient and Physician Level to Increase Surgical Referral. Oncologist, 2019, 24, e828-e834.	1.9	19
66	Impact of initial Norwood shunt type on young hypoplastic left heart syndrome patients listed for heart transplant: A multi-institutional study. Journal of Heart and Lung Transplantation, 2016, 35, 301-305.	0.3	18
67	HVAD to Heartmate 3 Device Exchange: AÂSociety of Thoracic Surgeons Intermacs Analysis. Annals of Thoracic Surgery, 2022, 114, 1672-1678.	0.7	18
68	Challenging homografts as the holy grail for aortic valve endocarditis. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 1230-1231.	0.4	17
69	Nonpharmacologic validation of the intrinsic heart rate in cardiac transplant recipients. Journal of Interventional Cardiac Electrophysiology, 1999, 3, 15-18.	0.6	16
70	Impact of age on incidence and prevalence of moderate-to-severe cellular rejection detected by routine surveillance biopsy in pediatric heart transplantation. Journal of Heart and Lung Transplantation, 2017, 36, 451-456.	0.3	16
71	Hyperthyroidism is Underdiagnosed and Undertreated in 3336 Patients. Annals of Surgery, 2018, 268, 506-512.	2.1	16
72	Resource Utilization in Pediatric Patients Supported With Ventricular Assist Devices in the United States: A Multicenter Study From the Pediatric Interagency Registry for Mechanically Assisted Circulatory Support and the Pediatric Health Information System. Journal of the American Heart Association, 2018, 7, .	1.6	16

#	Article	IF	CITATIONS
73	Race and Gender Disparities in Access to Parathyroidectomy: A Need to Change Processes for Diagnosis and Referral to Surgeons. Annals of Surgical Oncology, 2021, 28, 476-483.	0.7	16
74	Neurocognitive and Emotional Functioning in Lung Transplant Candidates: A Preliminary Study. Journal of Clinical Psychology in Medical Settings, 1997, 4, 79-90.	0.8	15
75	Evaluation of flow-modulation approaches in ventricular assist devices using an in-vitro endothelial cell culture model. Journal of Heart and Lung Transplantation, 2019, 38, 456-465.	0.3	15
76	Surgical palliation or primary transplantation for aortic valve atresia. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1451-1461.e7.	0.4	15
77	Surveillance for cardiac allograft vasculopathy: Practice variations among 50 pediatric heart transplant centers. Journal of Heart and Lung Transplantation, 2020, 39, 1260-1269.	0.3	15
78	Gender Differences in Mortality After Left Ventricular Assist Device Implant: A Causal Mediation Analysis Approach. ASAIO Journal, 2021, 67, 614-621.	0.9	15
79	A novel, data-driven conceptualization for critical left heart obstruction. Computer Methods and Programs in Biomedicine, 2018, 165, 107-116.	2.6	14
80	The Long and Winding Road to an Effective Left Ventricular Assist Device: The Demise of Medtronic's HVAD. Circulation, 2021, 144, 509-511.	1.6	14
81	Multi-institutional Study of Outcomes After Pediatric Heart Transplantation: Candidate Gene Polymorphism Analysis of ABCC2. Journal of Pediatric Pharmacology and Therapeutics, 2014, 19, 16-24.	0.3	14
82	Health-Related Quality of Life in Adult Survivors After the Fontan Operation. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 299-306.	0.4	13
83	Linkage of Medicare Records to the Interagency Registry of Mechanically Assisted Circulatory Support. Annals of Thoracic Surgery, 2018, 105, 1397-1402.	0.7	13
84	Databases in Pediatric Cardiac Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 675-676.	0.3	12
85	Use of Computed Tomography in Preoperative Planning for Heartware Left Ventricular Assist Device Placement. ASAIO Journal, 2019, 65, 70-76.	0.9	11
86	Stroke in pediatric ventricular assist device patients—a pedimacs registry analysis. Journal of Heart and Lung Transplantation, 2021, 40, 662-670.	0.3	11
87	Transesophageal Threeâ€Dimensional Echocardiography Assessment of Anomalous Coronary Arteries. Echocardiography, 2000, 17, 53-60.	0.3	10
88	Time-Related Risk of Pulmonary Conduit Re-replacement: A Congenital Heart Surgeons' Society Study. Annals of Thoracic Surgery, 2022, 113, 623-629.	0.7	10
89	Cardiac Transplantation and Mechanical Support for Functional Single Ventricle. World Journal for Pediatric & Congenital Heart Surgery, 2012, 3, 183-193.	0.3	9
90	Current Practices in the Timing of Stage 2 Palliation. World Journal for Pediatric & Congenital Heart Surgery, 2017, 8, 135-141.	0.3	9

#	Article	IF	CITATIONS
91	Strategies for Minimizing Hyperlipidemia After Cardiac Transplantation. American Journal of Cardiovascular Drugs, 2002, 2, 377-387.	1.0	8
92	Current Expectations for Cardiac Transplantation in Patients With Congenital Heart Disease. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 685-695.	0.3	8
93	Challenges of Cardiac Transplantation Following the Fontan Procedure. World Journal for Pediatric & Congenital Heart Surgery, 2017, 8, 480-486.	0.3	8
94	Transesophageal Echocardiographic Evaluation of Mechanical Biventricular Assist Device. Echocardiography, 1990, 7, 561-566.	0.3	7
95	Late Left Ventricular Outflow Tract Obstruction Following the Rastelli Operation. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 605-610.	0.3	7
96	Current Status of Training and Certification for Congenital Heart Surgery Around the World: Proceedings of the Meetings of the Global Council on Education for Congenital Heart Surgery of the World Society for Pediatric and Congenital Heart Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2021, 12, 394-405.	0.3	7
97	Transesophageal Echocardiography Findings of an Infected Quadricuspid Aortic Valve with an Anomalous Coronary Artery. Echocardiography, 1994, 11, 369-375.	0.3	6
98	Two- and Three-Dimensional Transesophageal Echocardiographic Localization of a Right Atrial Lipoma: Importance of Orienting Echocardiographic Images to the Surgeon's View. Echocardiography, 2001, 18, 539-542.	0.3	6
99	The World Database for Pediatric and Congenital Heart Surgery: Use of an International Congenital Database in South Korea. Korean Journal of Thoracic and Cardiovascular Surgery, 2018, 51, 81-84.	0.6	6
100	Cardiac allograft vasculopathy in pediatric heart transplant recipients does early-onset portend a worse prognosis?. Journal of Heart and Lung Transplantation, 2022, 41, 578-588.	0.3	6
101	Origins and Evolution of ExtracorporealÂCirculation. Journal of the American College of Cardiology, 2022, 79, 1606-1622.	1.2	6
102	Factors associated with mortality or transplantation versus Fontan completion after cavopulmonary shunt for patients with tricuspid atresia. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 399-409.e6.	0.4	5
103	PATIENT-SPECIFIC PREDICTIONS FOR CLINICAL DECISION-MAKING. ANZ Journal of Surgery, 1997, 67, 108-114.	0.3	4
104	The World Database for Pediatric and Congenital Heart Surgery: Update. World Journal for Pediatric & Congenital Heart Surgery, 2018, 9, 273-275.	0.3	4
105	Reasons for extended length of stay following chest tube removal in general thoracic surgical patients. Journal of Thoracic Disease, 2020, 12, 5700-5708.	0.6	4
106	Clinical characteristics and outcomes of patients requiring prolonged inotropes after left ventricular assist device implantation. Artificial Organs, 2020, 44, E382-E393.	1.0	4
107	Psychological Defensiveness Among Heart Transplant Candidates. Journal of Clinical Psychology in Medical Settings, 2000, 7, 167-174.	0.8	3
108	Performance of Noninvasive Assessment in the Diagnosis of Right Heart Failure After Left Ventricular Assist Device. ASAIO Journal, 2019, 65, 449-455.	0.9	3

#	Article	IF	CITATIONS
109	Cardiac Surgery and Postoperative Renal Allograft Failure. Annals of Thoracic Surgery, 2020, 110, 1904-1908.	0.7	3
110	Resource utilization in children with paracorporeal continuous-flow ventricular assist devices. Journal of Heart and Lung Transplantation, 2021, 40, 478-487.	0.3	3
111	The role of mechanical circulatory support as destination therapy for ambulatory heart failure. Global Cardiology Science & Practice, 2016, 2016, e201624.	0.3	3
112	Data Science and Cardiac Surgery. Journal of the American College of Cardiology, 2018, 72, 660-661.	1.2	2
113	Improvement in Kidney Function After Ventricular Assist Device Implantation and Its Influence on Thromboembolism, Hemorrhage, and Mortality. ASAIO Journal, 2020, 66, 268-276.	0.9	2
114	Outcomes of Durable Mechanical Circulatory Support in Myocarditis. ASAIO Journal, 2021, Publish Ahead of Print, .	0.9	2
115	We need better pediatric cardiac transplantation risk modeling. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 2036-2039.e1.	0.4	2
116	Novel Technique of Valve-Sparing Aortic Root Replacement in Two Children Younger Than 3 Years of Age. Annals of Thoracic Surgery, 2012, 94, 299-301.	0.7	1
117	Mock loop revelations and the calculus for recovery. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, 348-349.	0.4	1
118	Heart Transplantation for Complex Congenital Heart Disease: Will It Become an Arcane Activity?. Seminars in Thoracic and Cardiovascular Surgery, 2016, 28, 498-499.	0.4	1
119	Aortic valve homografts: Experiential atrophy spawns evolution of standards. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 281-282.	0.4	1
120	Predicting right ventricular failure after left ventricular assist device implantation: Frank and Starling prevail again. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1034-1035.	0.4	1
121	Educational and learning morbidity in pediatric heart transplant recipients: A pediatric heart transplant society study. Pediatric Transplantation, 2020, 24, e13711.	0.5	1
122	2019 STS/Intermacs Annual Report Writing Committee's Response. Annals of Thoracic Surgery, 2021, 111, 734.	0.7	1
123	Cardiothoracic Surgery at the University of Alabama at Birmingham (UAB): A Legacy of Innovation, Education, and Contributions. Seminars in Thoracic and Cardiovascular Surgery, 2020, 32, 606-616.	0.4	1
124	La base de datos mundial de cirugÃa cardÃaca pediátrica y congénita: una colaboración con el Registro Nacional de CirugÃa CardÃaca Pediátrica (RENACCAPE). Archivos De Cardiologia De Mexico, 2019, 89, 112-116.	0.1	1
125	The world database for pediatric and congenital heart surgery: A collaboration with the Registro Nacional de CirugÃa Cardiaca Pediátrica. Archivos De Cardiolog�a De M�xico (English Ed Internet), 2019, 89, 100-104.	0.1	1
126	Hospital Outcomes in LVAD Therapy: Can We Benchmark Performance and Preserve Disruptive Innovation?. Annals of Thoracic Surgery, 2022, , .	0.7	1

#	Article	IF	CITATIONS
127	Invited Commentary. Annals of Thoracic Surgery, 2011, 92, 827-828.	0.7	Ο
128	Invited Commentary. Annals of Thoracic Surgery, 2011, 92, 1684-1685.	0.7	0
129	Invited Commentary. Annals of Thoracic Surgery, 2012, 93, 717.	0.7	Ο
130	Invited Commentary. Annals of Thoracic Surgery, 2013, 95, 177-178.	0.7	0
131	Invited Commentary. Annals of Thoracic Surgery, 2013, 95, 883.	0.7	0
132	Invited Commentary. Annals of Thoracic Surgery, 2014, 97, 504-505.	0.7	0
133	Invited Commentary. Annals of Thoracic Surgery, 2014, 98, 547-548.	0.7	Ο
134	Invited Commentary. Annals of Thoracic Surgery, 2015, 99, 588-589.	0.7	0
135	Risk models for mechanical circulatory support in children. Journal of Heart and Lung Transplantation, 2015, 34, 499-500.	0.3	Ο
136	Transformational trajectory of paediatric circulatory support: the impact of a unique vision. European Journal of Cardio-thoracic Surgery, 2016, 50, 210-211.	0.6	0
137	The regurgitant bicuspid aortic valve: Recalibrating our surgical strategies. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, S72-S73.	0.4	Ο
138	The stiff heart: Can we more safely navigate heart surgery?. Journal of Thoracic and Cardiovascular Surgery, 2018, 156, 194-195.	0.4	0
139	The Frozen Apex: A Useful Addition to the Surgeons Armamentarium?. Seminars in Thoracic and Cardiovascular Surgery, 2018, 30, 412.	0.4	Ο
140	Commentary: Ventricular assist devices in small ventricles: Framing the challenge. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 2311-2312.	0.4	0
141	The "increased-risk donor― A plea for redefinition. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 611-612.	0.4	Ο
142	Commentary: Ventricular assist devices in patients with major kidney compromise—A paradigm shift?. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1320-1321.	0.4	0
143	Commentary: Absence of ventricular assist device–related risk for rejection after heart transplantation: Good news given the "new normalâ€: Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 138-139.	0.4	0
144	Commentary: Heart transplant second chances: Retransplantation should be supported by allocation algorithms. Journal of Thoracic and Cardiovascular Surgery, 2022, 163, 722-723.	0.4	0

#	Article	IF	CITATIONS
145	Commentary: Adult support with a pulsatile VAD: Reawakening of a bygone era?. Journal of Thoracic and Cardiovascular Surgery, 2021, 161, 1465-1466.	0.4	0
146	Commentary: The Fontan technique controversy: Where is the real equipoise?. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 1836-1837.	0.4	0
147	Commentary: Right Ventricular Enhancements in HLHS; A Platform for Progress. Seminars in Thoracic and Cardiovascular Surgery, 2021, 33, 802-803.	0.4	0
148	Commentary: Hope for the failing heart awaiting multiorgan transplantation. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.4	0
149	Commentary: Extracorporeal membrane oxygenation as a bridge to heart transplantation: Will we revisit Heisenberg's uncertainty principle and the observer effect?. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.4	Ο
150	Commentary: Unusual lung transplant anastomotic techniques with a historical context. JTCVS Techniques, 2021, 9, 195-196.	0.2	0
151	Commentary: Collateral impact of the HVAD decision and the path forward. Journal of Thoracic and Cardiovascular Surgery, 2022, 164, 1942-1943.	0.4	0