Shi-Feng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6157194/publications.pdf Version: 2024-02-01

SHI-FENC LUL

#	Article	IF	CITATIONS
1	Effect of strain rates on mechanical properties, microstructure and texture inside shear bands of pure magnesium. Materials Characterization, 2022, 184, 111686.	4.4	4
2	Microstructural evolution and ultrafine-grain formation during dynamic shear in pure tantalum. Materials Characterization, 2022, 186, 111820.	4.4	3
3	Study on the Grain Rotation of High-Purity Tantalum during Compression Deformation. Crystals, 2022, 12, 676.	2.2	2
4	Improvement of microstructure and texture homogeneity of tantalum by dynamic plastic deformation and subsequent annealing: Effect of pass number. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 846, 143305.	5.6	2
5	Quasi-in-situ study on the crystallographic lattice rotation of tantalum during compression deformation. Journal of Materials Research and Technology, 2022, 19, 858-865.	5.8	3
6	Comparative Study on the Kinetics of the Isothermal Reduction of Iron Ore Composite Pellets Using Coke, Charcoal, and Biomass as Reducing Agents. Metals, 2021, 11, 340.	2.3	14
7	Microstructure, texture, and fracture of pure magnesium adiabatic shear band under high strain rate compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 822, 141632.	5.6	17
8	Texture and Microstructure Evolution of Ultra-High Purity Cu-0.1Al Alloy under Different Rolling Methods. Crystals, 2021, 11, 1113.	2.2	5
9	Improving Texture and Microstructure Homogeneity in High-Purity Ta Sheets by Warm Cross Rolling and Annealing. Metals, 2021, 11, 1665.	2.3	4
10	Anomalous Deformation and Recrystallization Phenomenon in {111} Grains in Clock-Rolling Tantalum Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 104-108.	2.2	4
11	Pass number dependence of through-thickness microstructure homogeneity in tantalum sheets under the change of strain path. Materials Characterization, 2020, 160, 110076.	4.4	8
12	Effect of strain path change on the through-thickness microstructure during tantalum rolling. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105168.	3.8	9
13	The evolution of texture and microstructure uniformity in tantalum sheets during asymmetric cross rolling. Materials Characterization, 2020, 168, 110586.	4.4	10
14	Enhancing the {100} grain subdivision in high-purity tantalum sheets by asymmetric cross rolling. Materials Characterization, 2020, 166, 110439.	4.4	2
15	Beneficial clock-rolling cycles on the microstructure uniformity of {111} grains in tantalum sheets. Progress in Natural Science: Materials International, 2020, 30, 124-127.	4.4	1
16	Asymmetric cross rolling: a new technique for alleviating orientation-dependent microstructure inhomogeneity in tantalum sheets. Journal of Materials Research and Technology, 2020, 9, 4566-4577.	5.8	17
17	Strain dependence of deformation and recrystallization microstructure homogeneity in clock-rolled tantalum sheets. Materials Characterization, 2020, 161, 110165.	4.4	3
18	Orientation-dependent grain boundary characteristics in tantalum upon the change of strain path. Materials Characterization, 2019, 154, 277-284.	4.4	8

Shi-Feng Liu

#	Article	IF	CITATIONS
19	Inhomogeneous deformation and recrystallization behavior of through-thickness tantalum sheet under one-cycle clock-rolling. Progress in Natural Science: Materials International, 2019, 29, 485-493.	4.4	11
20	Quasi in situ characterization of texture evolution in a copper-manganese alloy deformed by cold rolling. Materials Research Express, 2019, 6, 0865e4.	1.6	0
21	The Effect of Different Annealing Temperatures on Recrystallization Microstructure and Texture of Clock-Rolled Tantalum Plates with Strong Texture Gradient. Metals, 2019, 9, 358.	2.3	3
22	Effects of Annealing Temperature on Recrystallization Texture and Microstructure Uniformity of High Purity Tantalum. Metals, 2019, 9, 75.	2.3	9
23	Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling. Materials, 2019, 12, 169.	2.9	15
24	Quasi-In-Situ EBSD Observation of the Orientation Evolution in Polycrystalline Tantalum During Rolling Deformation. Acta Metallurgica Sinica (English Letters), 2019, 32, 1015-1020.	2.9	4
25	Deformation and annealing behavior in the â€~interaction zone' of cold-rolled tantalum sheets. Vacuum, 2019, 164, 105-113.	3.5	9
26	Effects of asymmetrical rolling on through-thickness microstructure and texture of body-centered cubic (BCC) tantalum. International Journal of Refractory Metals and Hard Materials, 2019, 78, 51-60.	3.8	20
27	Power generation by PVDF-TrFE/graphene nanocomposite films. Composites Part B: Engineering, 2019, 164, 703-709.	12.0	48
28	Static recrystallization texture and microstructure evolution of copper-manganese alloy pre-deformed by unidirectional rolling. Materials Research Express, 2019, 6, 016537.	1.6	0
29	Inhomogeneous deformation of {111} <uvw> grain in cold rolled tantalum. Journal of Materials Science and Technology, 2018, 34, 2178-2182.</uvw>	10.7	18
30	Quantitative analysis: How annealing temperature influences recrystallization texture and grain shape in tantalum. International Journal of Refractory Metals and Hard Materials, 2018, 72, 244-252.	3.8	18
31	Effects of pre-recovery on the recrystallization microstructure and texture of high-purity tantalum. Journal of Materials Science, 2018, 53, 2985-2994.	3.7	11
32	Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum. Journal of Materials Science, 2018, 53, 12543-12552.	3.7	13
33	Crystallographic analysis of nucleation for random orientations in high-purity tantalum. Journal of Materials Research, 2018, 33, 1755-1763.	2.6	4
34	Through-thickness texture gradient of tantalum sputtering target. Rare Metals, 2017, 36, 523-526.	7.1	6
35	Revealing substructure in clock-rolled Ta aided with triple focused ion beam. Rare Metals, 2017, 36, 284-288.	7.1	2
36	Effect of grain size, texture and density of precipitates on the hardness and tensile yield stress of Mg-14Gd-0.5Zr alloys. Materials and Design, 2017, 114, 450-458.	7.0	40

Shi-Feng Liu

#	Article	IF	CITATIONS
37	135° Clock Rolling: An Approach to Improve the Microstructure and Texture of Tantalum Used for Sputtering Target. , 2016, , 549-557.		0
38	Largely alleviating the orientation dependence by sequentially changing strain paths. Materials and Design, 2016, 97, 464-472.	7.0	36
39	Facile Synthesis of Flower-like (BiO)2CO3@MnO2 and Bi2O3@MnO2 Nanocomposites for Supercapacitors. Electrochimica Acta, 2015, 168, 97-103.	5.2	46
40	Through-thickness texture in clock-rolled tantalum plate. International Journal of Refractory Metals and Hard Materials, 2015, 48, 194-200.	3.8	27
41	Fabrication and Characterization of Nearâ€Netâ€Shape <i>In Situ</i> Reactionâ€Bonded Porous Cordierite/SiC Ceramics. International Journal of Applied Ceramic Technology, 2014, 11, 839-844.	2.1	5
42	A comparative study of clock rolling and unidirectional rolling on deformation/recrystallization microstructure and texture of high purity tantalum plates. International Journal of Refractory Metals and Hard Materials, 2013, 41, 453-460.	3.8	23
43	Effects of Preheatâ€Treated Aluminosilicate Addition on the Phase Development, Microstructure, and Mechanical Properties of Mullitized Porous OBSC Ceramics. International Journal of Applied Ceramic Technology, 2009, 6, 617-625.	2.1	10
44	Effects of CeO2 addition on the properties of cordierite-bonded porous SiC ceramics. Journal of the European Ceramic Society, 2009, 29, 1795-1802.	5.7	50
45	Fabrication and characterization of cordierite-bonded porous SiC ceramics. Ceramics International, 2009, 35, 597-602.	4.8	91
46	An Effective Method to Homogenize the Microstructure of High Purity Tantalum in Sputtering Targets. , 0, , 303-308.		0