Yongxin Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6156988/yongxin-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

266
papers

6,927
citations

46
h-index
g-index

8,010
ext. papers

6.17
ext. papers

269
ext. citations

avg, IF

L-index

#	Paper	IF	Citations
266	Fully conjugated azacorannulene dimer as large diaza[80]fullerene fragment <i>Nature Communications</i> , 2022 , 13, 1498	17.4	2
265	Interpenetration Control in Thorium Metal-Organic Frameworks: Structural Complexity toward Iodine Adsorption. <i>Inorganic Chemistry</i> , 2021 , 60, 5617-5626	5.1	5
264	Crystal structure and Hirshfeld surface analysis of a copper(II) complex containing 2-nitro-benzoate and tetra-methyl-ethylenedi-amine ligands. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2021 , 77, 412-415	0.7	
263	Metastable 1T©phase group VIB transition metal dichalcogenide crystals. <i>Nature Materials</i> , 2021 , 20, 1113-1120	27	36
262	Ligand substitution in the osmium carbonyl cluster Os2(CO)8(µ3-SbPh)Os(CO)3(Cl)2: Towards derivatives of the osmostibine metalloligand. <i>Journal of Organometallic Chemistry</i> , 2021 , 942, 121817	2.3	O
261	Reaction of the Decaosmium Carbido Cluster [Os10(\$\tilde{\mu}\$6-C)(CO)24]2\tilde{\mu}with Halostibines. <i>Journal of Cluster Science</i> , 2021 , 32, 929-935	3	0
260	Boosting the Iodine Adsorption and Radioresistance of Th-UiO-66 MOFs via Aromatic Substitution. <i>Chemistry - A European Journal</i> , 2021 , 27, 1286-1291	4.8	23
259	Access to C-Stereogenic PN(sp2)P Pincer Ligands via Phosphapalladacycle Catalyzed Asymmetric Hydrophosphination. <i>Organometallics</i> , 2021 , 40, 682-692	3.8	2
258	Ferroelastic-switching-driven large shear strain and piezoelectricity in a hybrid ferroelectric. <i>Nature Materials</i> , 2021 , 20, 612-617	27	28
257	Diazapentabenzocorannulenium: A Hydrophilic/Biophilic Cationic Buckybowl. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
256	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. <i>Chemical Communications</i> , 2020 , 56, 6715-6718	5.8	40
255	Catalytic access to ferrocenyl phosphines bearing both planar and central chirality IA kinetic resolution approach via catalytic asymmetric P(III) Dond formation. <i>Tetrahedron</i> , 2020 , 76, 131259	2.4	1
254	Air-stable phosphine organocatalysts for the hydroarsination reaction. <i>Journal of Organometallic Chemistry</i> , 2020 , 914, 121216	2.3	2
253	Hybrid 2D [Pb(CH3NH2)I2]n Coordination Polymer Precursor for Scalable Perovskite Deposition. <i>ACS Energy Letters</i> , 2020 , 5, 2305-2312	20.1	10
252	Ultrastable Thorium Metal-Organic Frameworks for Efficient Iodine Adsorption. <i>Inorganic Chemistry</i> , 2020 , 59, 4435-4442	5.1	46
251	Catalytic Asymmetric Diarylphosphine Addition to Diazoesters for the Synthesis of P-Stereogenic Phosphinates via P*-N Bond Formation. <i>Journal of Organic Chemistry</i> , 2020 , 85, 14763-14771	4.2	11
250	Iron-Mediated Ring-Opening and Rearrangement Cascade Synthesis of Polysubstituted Pyrroles from 4-Alkenylisoxazoles. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 1868-1876	5.6	6

249	Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 4118-4128	5.1	9
248	Molecular Engineering of Pure 2D Lead-Iodide Perovskite Solar Absorbers Displaying Reduced Band Gaps and Dielectric Confinement. <i>ChemSusChem</i> , 2020 , 13, 2693-2701	8.3	6
247	Catalytic Approach toward Chiral P,N-Chelate Complexes Utilizing the Asymmetric Hydrophosphination Protocol. <i>Inorganic Chemistry</i> , 2020 , 59, 3874-3886	5.1	8
246	Targeted Synthesis of Trimeric Organic B romoplumbate Hybrids That Display Intrinsic, Highly Stokes-Shifted, Broadband Emission. <i>Chemistry of Materials</i> , 2020 , 32, 4431-4441	9.6	14
245	Metal Coordination Sphere Deformation Induced Highly Stokes-Shifted, Ultra Broadband Emission in 2D Hybrid Lead-Bromide Perovskites and Investigation of Its Origin. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10791-10796	16.4	15
244	Chemoselective Synthesis and Evaluation of EOxovinylarsines as an Arsenic Synthetic Precursor. <i>Organometallics</i> , 2020 , 39, 271-278	3.8	1
243	Bisguanidinium-Catalyzed Epoxidation of Allylic and Homoallylic Amines under Phase Transfer Conditions. <i>ACS Catalysis</i> , 2020 , 10, 2684-2691	13.1	8
242	Inducing formation of a corrugated, white-light emitting 2D lead-bromide perovskite via subtle changes in templating cation. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 889-893	7.1	26
241	Divergent Reactivity of Phosphapalladacycles toward EH (E = N, P, As) Bonds. <i>Organometallics</i> , 2020 , 39, 182-188	3.8	2
2 40	Investigating the solid-state assembly of pharmaceutically-relevant N,N-dimethyl-O-thiocarbamates in the absence of labile hydrogen bonds. <i>CrystEngComm</i> , 2020 , 22, 829	0 ² 8 ² 298	3
239	Ruthenium-Based Structural Mimics of the Cofactor of [Fe]-Hydrogenase: Replacement of the Acyl Moiety with an N-Heterocyclic Carbene. <i>ChemistrySelect</i> , 2020 , 5, 10775-10780	1.8	
238	Asymmetric Catalytic 1,2-Dihydrophosphination of Secondary 1,2-Diphosphines Direct Access to Free P*- and P*,C*-Diphosphines. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 2373-2378	5.6	7
237	Palladacycle promoted asymmetric hydrophosphination of Hunsaturated sulfonyl fluorides. <i>Journal of Organometallic Chemistry</i> , 2019 , 899, 120912	2.3	9
236	Synthesis, characterization and photophysical studies of a novel polycyclic diborane. <i>New Journal of Chemistry</i> , 2019 , 43, 564-568	3.6	3
235	Occurrence of Chiral Nanostructures Induced by Multiple Hydrogen Bonds. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9946-9954	16.4	56
234	Oxidative addition of elemental selenium to 1,4,2,5-diazadiborinine. <i>Dalton Transactions</i> , 2019 , 48, 751	4 ₂ 7. 5 18	5
233	Crystalline Tetraatomic Boron(0) Species. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5164-51	68 6.4	14
	Investigating palladium pincer complexes in catalytic asymmetric hydrophosphination and		

231	Very strong trans effect in ruthenacyclic carbamoyl complexes leads to ligand redistribution in phosphine derivatives. <i>Journal of Organometallic Chemistry</i> , 2019 , 887, 5-11	2.3	2
230	Germylone-bridged bimetallic Ir and Rh complexes. <i>Dalton Transactions</i> , 2019 , 48, 3555-3559	4.3	2
229	Tandem double hydrophosphination of munsaturated-1,3-indandiones: diphosphine synthesis, mechanistic investigations and coordination chemistry. <i>Chemical Communications</i> , 2019 , 55, 10936-10939	5.8	4
228	Metal-Free Selective Borylation of Arenes by a Diazadiborinine via C-H/C-F Bond Activation and Dearomatization. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13729-13733	16.4	17
227	Catalytic and Mechanistic Developments of the Nickel(II) Pincer Complex-Catalyzed Hydroarsination Reaction. <i>Chemistry - A European Journal</i> , 2019 , 25, 11308-11317	4.8	4
226	Design and assembly of a chiral composite metal-organic framework for efficient asymmertric sequential transformation of alkenes to amino alcohols. <i>Chemical Communications</i> , 2019 , 55, 9136-9139	5.8	11
225	Orthogonality in main group compounds: a direct one-step synthesis of air- and moisture-stable cyclophosphazanes by mechanochemistry. <i>Chemical Communications</i> , 2018 , 54, 6800-6803	5.8	16
224	Structure engineering: extending the length of azaacene derivatives through quinone bridges. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3628-3633	7.1	9
223	A Crystalline Diazadiborinine Radical Cation and Its Boron-Centered Radical Reactivity. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7826-7829	16.4	27
222	Water-Binding-Mediated Gelation/Crystallization and Thermosensitive Superchirality. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7774-7779	16.4	32
221	From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single-Crystal Indolocarbazoles Through Delicate Synergetic CH/NH??? Interactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8875-8880	16.4	31
220	Isolation and Reactivity of a Chlorogermyliumylidene Featuring Two Gettl Units. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 2228-2231	2.3	5
219	Impact of CHIX (X = F, N) and Interactions on Tuning the Degree of Charge Transfer in F6TNAP-Based Organic Binary Compound Single Crystals. <i>Crystal Growth and Design</i> , 2018 , 18, 1776-178	3 3 ·5	28
218	Boron Analogue of Vinylidene Dication Supported by Phosphines. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1255-1258	16.4	22
217	Photooxidation of a Twisted Isoquinolinone. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 250-254	4.5	3
216	Stereogenic Lock in 1-Naphthylethanamine Complexes for Catalyst and Auxiliary Design: Structural and Reactivity Analysis for Cycloiridated Pseudotetrahedral Complexes. <i>Organometallics</i> , 2018 , 37, 99-1	∂6 ⁸	11
215	A Bis(germyliumylidene)silver(I) Complex Dication. <i>Organometallics</i> , 2018 , 37, 1368-1372	3.8	8
214	B-H Bond Activation by an Amidinate-Stabilized Amidosilylene: Non-Innocent Amidinate Ligand. <i>Inorganic Chemistry</i> , 2018 , 57, 5879-5887	5.1	17

(2018-2018)

213	Engineering the Frontier Orbitals of a Diazadiborinine for Facile Activation of H, NH, and an Isonitrile. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7846-7849	16.4	28
212	Catalytic asymmetric synthesis of Pt- and Pd-PCP pincer complexes bearing a para-N pyridinyl backbone. <i>Journal of Organometallic Chemistry</i> , 2018 , 862, 22-27	2.3	3
211	Polymer-Assisted Single Crystal Engineering of Organic Semiconductors To Alter Electron Transport. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 11837-11842	9.5	13
210	Molecular Engineering toward Coexistence of Dielectric and Optical Switch Behavior in Hybrid Perovskite Phase Transition Material. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 6416-6423	2.8	15
209	Desymmetrization of Achiral Heterobicyclic Alkenes through Catalytic Asymmetric Hydrophosphination. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 2829-2833	4.5	14
208	Controlling Supramolecular Chirality of Two-Component Hydrogels by J- and H-Aggregation of Building Blocks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6467-6473	16.4	111
207	Hole Mobility Modulation in Single-Crystal Metal Phthalocyanines by Changing the Metal-畑 Interactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10112-10117	16.4	30
206	Challenges in cyclometalation: steric effects leading to competing pathways and Graph Graph Gr	4.3	4
205	Triflic-Acid-Catalyzed Tandem Allylic Substitution-Cyclization Reaction of Alcohols with Thiophenols-Facile Access to Polysubstituted Thiochromans. <i>ACS Omega</i> , 2018 , 3, 8945-8951	3.9	4
204	Pyrene-Containing Twistarene: Twelve Benzene Rings Fused in a Row. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13555-13559	16.4	51
203	Inducing Panchromatic Absorption and Photoconductivity in Polycrystalline Molecular 1D Lead-Iodide Perovskites through Estacked Viologens. <i>Chemistry of Materials</i> , 2018 , 30, 5827-5830	9.6	21
202	Synthesis of Unique Phosphazane Macrocycles via Steric Activation of C-N Bonds. <i>Inorganic Chemistry</i> , 2018 , 57, 10993-11004	5.1	6
201	Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal Ions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16275-16283	16.4	61
200	Ruthenacyclic Carbamoyl Complexes: Highly Efficient Catalysts for Organosilane Hydrolysis. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 4982-4986	2.3	6
199	Facile Activation of Homoatomic Bonds in White Phosphorus and Diborane by a Diboraallene. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15691-15695	16.4	21
198	Two-Dimensional and Emission-Tunable: An Unusual Perovskite Constructed from Lindqvist-Type [PbBr] Nanoclusters. <i>Inorganic Chemistry</i> , 2018 , 57, 14035-14038	5.1	19
197	Efficient Synthesis of Malonate Functionalized Chiral Phosphapalladacycles and their Catalytic Evaluation in Asymmetric Hydrophosphination of Chalcone. <i>European Journal of Inorganic Chemistry</i> , 2018 , 2018, 4385-4390	2.3	4
196	Stibine-protected Au nanoclusters: syntheses, properties and facile conversion to GSH-protected Au nanocluster. <i>Chemical Science</i> , 2018 , 9, 8723-8730	9.4	26

195	Embedding a Ruthenium-Based Structural Mimic of the [Fe]-Hydrogenase Cofactor into Papain. <i>Inorganic Chemistry</i> , 2018 , 57, 12206-12212	5.1	7
194	Structural Mimics of the [Fe]-Hydrogenase: A Complete Set for Group VIII Metals. <i>Inorganic Chemistry</i> , 2018 , 57, 7113-7120	5.1	12
193	Synthesis of Stereoprojecting, Chiral N-C(sp3)-E Type Pincer Complexes. <i>Organometallics</i> , 2018 , 37, 227	2 ₃ 2 5285	5 10
192	Donor-Acceptor Stabilized Tetra(silanimine). <i>Inorganic Chemistry</i> , 2017 , 56, 1609-1615	5.1	6
191	Efficient access to a designed phosphapalladacycle catalyst via enantioselective catalytic asymmetric hydrophosphination. <i>Dalton Transactions</i> , 2017 , 46, 1311-1316	4.3	7
190	Formation of Boron-Main-Group Element Bonds by Reactions with a Tricoordinate Organoboron LPhB: (L = Oxazol-2-ylidene). <i>Inorganic Chemistry</i> , 2017 , 56, 5586-5593	5.1	23
189	Reactivity of an amidinato silylene and germylene toward germanium(ii), tin(ii) and lead(ii) halides. <i>Dalton Transactions</i> , 2017 , 46, 3642-3648	4.3	18
188	Reactivity of a Base-Stabilized Germanium(I) Dimer toward Group 9 Metal(I) Chloride and Dimanganese Decacarbonyl. <i>Inorganic Chemistry</i> , 2017 , 56, 5402-5410	5.1	12
187	Mechanochemical Synthesis of Phosphazane-Based Frameworks. <i>Chemistry - A European Journal</i> , 2017 , 23, 11279-11285	4.8	17
186	Nickel catalyzed enantioselective hydroarsination of nitrostyrene. <i>Chemical Communications</i> , 2017 , 53, 6307-6310	5.8	12
185	A large pyrene-fused N-heteroacene: fifteen aromatic six-membered rings annulated in one row. <i>Chemical Communications</i> , 2017 , 53, 7772-7775	5.8	94
184	Trapping a Silicon(I) Radical with Carbenes: A Cationic cAAC-Silicon(I) Radical and an NHC-Parent-Silyliumylidene Cation. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 7573-7578	16.4	32
183	Alkene-Carbene Isomerization induced by Borane: Access to an Asymmetrical Diborene. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5047-5050	16.4	58
182	Diverse Bonding Activations in the Reactivity of a Pentaphenylborole toward Sodium Phosphaethynolate: Heterocycle Synthesis and Mechanistic Studies. <i>Inorganic Chemistry</i> , 2017 , 56, 4112	2- 4 1−20	18
181	Delocalized Hypervalent Silyl Radical Supported by Amidinate and Imino Substituents. <i>Inorganic Chemistry</i> , 2017 , 56, 701-704	5.1	7
180	Single-crystal growth, structures, charge transfer and transport properties of anthracene-F4TCNQ and tetracene-F4TCNQ charge-transfer compounds. <i>CrystEngComm</i> , 2017 , 19, 618-624	3.3	51
179	Molecular Crystal Engineering: Tuning Organic Semiconductor from p-type to n-type by Adjusting Their Substitutional Symmetry. <i>Advanced Materials</i> , 2017 , 29, 1605053	24	47
178	Halogen-Assisted Piezochromic Supramolecular Assemblies for Versatile Haptic Memory. <i>Journal of the American Chemical Society</i> , 2017 , 139, 436-441	16.4	109

(2016-2017)

Aryl-NHC-group 13 trimethyl complexes: structural, stability and bonding insights. <i>Dalton Transactions</i> , 2017 , 46, 854-864	4.3	12
Highly Effective Carbon Fixation via Catalytic Conversion of CO2 by an Acylamide-Containing Metal Drganic Framework. <i>Chemistry of Materials</i> , 2017 , 29, 9256-9261	9.6	88
A snapshot of inorganic Janovsky complex analogues featuring a nucleophilic boron center. <i>Chemical Communications</i> , 2017 , 53, 12734-12737	5.8	8
Crystalline boron-linked tetraaminoethylene radical cations. <i>Chemical Science</i> , 2017 , 8, 7419-7423	9.4	15
Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14572-14576	16.4	5
Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. <i>CheM</i> , 2017 , 3, 134-151	16.2	26
Cobalt-platinum heterometallic clusters containing N-heterocyclic carbene ligands. <i>Journal of Organometallic Chemistry</i> , 2017 , 849-850, 48-53	2.3	2
Crystalline Neutral Allenic Diborene. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 9829-9832	16.4	41
A Dimeric NHC-Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11565-11569	16.4	10
Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(arylimino)acenaphthene Complexes. <i>Inorganic Chemistry</i> , 2017 , 56, 7811-7820	5.1	20
Synthesis and thermal reactivity of a Me3N-stabilized cyclic (alkyl)(amino)oxophosphonium ion. <i>Inorganica Chimica Acta</i> , 2017 , 460, 2-7	2.7	7
Computational and carbon-13 NMR studies of Pt-C bonds in P-C-P pincer complexes. <i>Dalton Transactions</i> , 2016 , 45, 2095-101	4.3	4
Synthesis of a Bent 2-Silaallene with a Perturbed Electronic Structure from a Cyclic Alkyl(amino) Carbene-Diiodosilylene. <i>Inorganic Chemistry</i> , 2016 , 55, 9091-8	5.1	32
Ambiphilic boron in 1,4,2,5-diazadiborinine. <i>Nature Communications</i> , 2016 , 7, 11871	17.4	73
Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. <i>Nature Communications</i> , 2016 , 7, 13455	17.4	37
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes. <i>Dalton Transactions</i> , 2016 , 45, 13556-64	4.3	9
Mechanistic insights into the role of PC- and PCP-type palladium catalysts in asymmetric hydrophosphination of activated alkenes incorporating potential coordinating heteroatoms. <i>Dalton Transactions</i> , 2016 , 45, 13449-55	4.3	21
Azaborabutadienes: Synthesis by Metal-Free Carboboration of Nitriles and Utility as Building Blocks for B,N-Heterocycles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14718-14722	16.4	29
	Highly Effective Carbon Fixation via Catalytic Conversion of CO2 by an Acylamide-Containing MetalDrganic Framework. Chemistry of Materials, 2017, 29, 9256-9261 A snapshot of inorganic Janovsky complex analogues featuring a nucleophilic boron center. Chemical Communications, 2017, 53, 12734-12737 Crystalline boron-linked tetraaminoethylene radical cations. Chemical Science, 2017, 8, 7419-7423 Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. Angewandte Chemie - International Edition, 2017, 56, 14572-14576 Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. Chem, 2017, 3, 134-151 Cobalt-platinum heterometallic clusters containing N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2017, 849-850, 48-53 Crystalline Neutral Allenic Diborene. Angewandte Chemie - International Edition, 2017, 56, 9829-9832 A Dimeric NHC-Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 11565-11569 Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(arylimino)acenaphthene Complexes. Inorganic Chemistry, 2017, 56, 7811-7820 Synthesis and thermal reactivity of a Me3N-stabilized cyclic (alkyl)(amino)oxophosphonium ion. Inorganica Chimica Acta, 2017, 460, 2-7 Computational and carbon-13 NMR studies of Pt-C bonds in P-C-P pincer complexes. Dalton Transactions, 2016, 45, 2095-101 Synthesis of a Bent 2-Silaallene with a Perturbed Electronic Structure from a Cyclic Alkyl(amino) Carbene-Diiodosilylene. Inorganic Chemistry, 2016, 55, 9091-8 Ambighilic boron in 1,4,2,5-diazadiborinine. Nature Communications, 2016, 7, 11871 Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nature Communications, 2016, 7, 13455 Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes. Dalton Transactions, 2016, 45, 13556-64 Mechanistic insights into the role of PC-	Highly Effective Carbon Fixation via Catalytic Conversion of CO2 by an Acylamide-Containing MetalOrganic Framework. Chemistry of Materials, 2017, 29, 9256-9261 A snapshot of inorganic Janowsky complex analogoues featuring a nucleophilic boron center. Chemical Communications, 2017, 53, 12734-12737 Crystalline boron-linked tetraaminoethylene radical cations. Chemical Science, 2017, 8, 7419-7423 94 Ring Expansion, Photoisomerization, and Retrocyclization of 1,4,2-Diazaboroles. Angewandte Chemie - International Edition, 2017, 56, 14572-14576 Electrostatic Catalyst Generated from Diazadiborinine for Carbonyl Reduction. CheM, 2017, 3, 134-151 16-2 Cobalt-platinum heterometallic clusters containing N-heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2017, 849-850, 48-53 Crystalline Neutral Allenic Diborene. Angewandte Chemie - International Edition, 2017, 56, 9829-9832 16-4 A Dimeric NHC-Silicon Monotelluride: Synthesis, Isomerization, and Reactivity. Angewandte Chemie - International Edition, 2017, 56, 1556-11569 Synthesis and the Optical and Electrochemical Properties of Indium(III) Bis(arylimino)acenaphthene Complexes. Inorganic Chemistry, 2017, 56, 7811-7820 Synthesis and thermal reactivity of a Me3N-stabilized cyclic (alkyl)(amino)oxophosphonium ion. Inorganica Chimica Acto, 2017, 460, 2-7 Computational and carbon-13 NMR studies of Pt-C bonds in P-C-P pincer complexes. Dalton Transactions, 2016, 45, 2095-101 Synthesis of a Bent 2-Silaallene with a Perturbed Electronic Structure from a Cyclic Alkyl(amino) Carbene-Diiodosilylene. Inorganic Chemistry, 2016, 55, 9091-8 Ambiphilic boron in 1,4,2,5-diazadiborinine. Nature Communications, 2016, 7, 11871 17-4 Bisguanidinium dinuclear oxodiperoxomolybdosulfate ion pair-catalyzed enantioselective sulfoxidation. Nature Communications, 2016, 7, 13455 Ambiphilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes. Dalton Transactions, 2016, 45, 13556-64 Mechanistic insights i

159	Isolation of a Diborane(6) Dication: Formation and Cleavage of an Electron-Precise B(sp(3))-B(sp(3)) Bond. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8623-9	16.4	56
158	Synthesis, characterization, and electronic structures of a methyl germyliumylidene ion and germylone-group VI metal complexes. <i>Chemical Communications</i> , 2016 , 52, 613-6	5.8	27
157	Palladacyclo-promoted asymmetric hydrophosphination reaction between diphenylphosphine and 2-ethynylpyridine. <i>Journal of Organometallic Chemistry</i> , 2016 , 801, 1-5	2.3	4
156	Synthesis of an N-Heterocyclic-Carbene-Stabilized Siladiimide. <i>Inorganic Chemistry</i> , 2016 , 55, 4-6	5.1	7
155	The synthesis and efficient one-pot catalytic "self-breeding" of asymmetrical NC(sp(3))E-hybridised pincer complexes. <i>Chemical Communications</i> , 2016 , 52, 4211-4	5.8	32
154	Switching charge-transfer characteristics from p-type to n-type through molecular "doping" (co-crystallization). <i>Chemical Science</i> , 2016 , 7, 3851-3856	9.4	80
153	Isolation of a Cyclic (Alkyl)(amino)germylene. <i>Molecules</i> , 2016 , 21,	4.8	19
152	Serendipitous Observation of Al Insertion into a C-O Bond in L PhB (L=Oxazol-2-ylidene). <i>Chemistry - A European Journal</i> , 2016 , 22, 1922-1925	4.8	24
151	Reactivity Studies on a Diazadiphosphapentalene. <i>Chemistry - A European Journal</i> , 2016 , 22, 9976-85	4.8	15
150	Investigation of Functional Group Effects on Palladium Catalysed Asymmetric Pℍ Addition. <i>Australian Journal of Chemistry</i> , 2016 , 69, 499	1.2	2
149	A Colorimetric and Fluorimetric Chemodosimeter for Copper Ion Based on the Conversion of Dihydropyrazine to Pyrazine. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 136-40	4.5	24
148	Synthesis of a Germylidenide Anion from the CII Bond Activation of a Bis(germylene). Organometallics, 2016 , 35, 1060-1063	3.8	13
147	Synthesis, physical properties, and sensing behaviour of a novel naphthalenediimide derivative. <i>Dyes and Pigments</i> , 2016 , 131, 224-230	4.6	7
146	A multi-step solvent-free mechanochemical route to indium(iii) complexes. <i>Dalton Transactions</i> , 2016 , 45, 7941-6	4.3	33
145	Isolation of 1,2,4,3-Triazaborol-3-yl-metal (Li, Mg, Al, Au, Zn, Sb, Bi) Derivatives and Reactivity toward CO and Isonitriles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6650-61	16.4	89
144	Isolation of Phosphinoimino-2-imidazoline. <i>Zeitschrift Fur Anorganische Und Allgemeine Chemie</i> , 2016 , 642, 1264-1268	1.3	2
143	Efficient and stereoselective synthesis of monomeric and bimetallic pincer complexes containing Pd-bonded stereogenic carbons. <i>RSC Advances</i> , 2016 , 6, 75951-75959	3.7	13
142	1,3,2,5-Diazadiborinine featuring nucleophilic and electrophilic boron centres. <i>Nature Communications</i> , 2015 , 6, 7340	17.4	73

(2015-2015)

141	Highly selective anti-cancer properties of ester functionalized enantiopure dinuclear gold(I)-diphosphine. <i>European Journal of Medicinal Chemistry</i> , 2015 , 98, 250-5	6.8	14
140	Palladium catalyzed asymmetric hydrophosphination of 田and 珊unsaturated malonate esters - efficient control of reactivity, stereo- and regio-selectivity. <i>Dalton Transactions</i> , 2015 , 44, 1258-6	5 <mark>4</mark> .3	43
139	Anti-Markovnikov hydroimination of terminal alkynes in gold-catalyzed pyridine construction from ammonia. <i>Chemical Communications</i> , 2015 , 51, 12419-22	5.8	9
138	Synthesis, structure, physical properties and OLED application of pyrazinell riphenylamine fused conjugated compounds. <i>RSC Advances</i> , 2015 , 5, 63080-63086	3.7	29
137	Dye-sensitized polyoxometalate for visible-light-driven photoelectrochemical cells. <i>Dalton Transactions</i> , 2015 , 44, 14354-8	4.3	37
136	Synthesis and Hydrolytic Studies on the Air-Stable [(4-CN-PhO)(E)P(EN(t)Bu)]2 (E = O, S, and Se) Cyclodiphosphazanes. <i>Inorganic Chemistry</i> , 2015 , 54, 6423-32	5.1	20
135	Versatile Syntheses of Optically Pure PCE Pincer Ligands: Facile Modifications of the Pendant Arms and Ligand Backbones. <i>Organometallics</i> , 2015 , 34, 1582-1588	3.8	29
134	Diverse reactivity of a tricoordinate organoboron LPhB: (L = oxazol-2-ylidene) towards alkali metal, group 9 metal, and coinage metal precursors. <i>Chemical Science</i> , 2015 , 6, 2893-2902	9.4	76
133	Oxo-Bridged Bis(group 4 metal unsymmetric phosphonium-stabilized carbene) Complexes. <i>Organometallics</i> , 2015 , 34, 1238-1244	3.8	11
132	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylphosphole and Sulfoxide. <i>Organometallics</i> , 2015 , 34, 5081-5087	3.8	2
131	Palladacycle promoted base controlled regio- and enantioselective hydrophosphination of 2-pyridylacrylate/amide and the cytotoxicity of their gold complexes. <i>Dalton Transactions</i> , 2015 , 44, 175	\$ 7 ² 64	8
130	A crystalline CuBnB framework for high-performance lithium storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19410-19416	13	48
129	Asymmetric 1,4-Conjugate Addition of Diarylphosphines to ##Unsaturated Ketones Catalyzed by Transition-Metal Pincer Complexes. <i>Organometallics</i> , 2015 , 34, 5196-5201	3.8	36
128	Isolation and Reactivity of 1,4,2-Diazaborole. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11274	-1 76.4	15
127	4-Diphenylamino-phenyl substituted pyrazine: nonlinear optical switching by protonation. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9191-9196	7.1	77
126	N-Heteroheptacenequinone and N-heterononacenequinone: synthesis, physical properties, crystal structures and photoelectrochemical behaviors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9877-9884	7.1	21
125	Reversible [4 + 2] cycloaddition reaction of 1,3,2,5-diazadiborinine with ethylene. <i>Chemical Science</i> , 2015 , 6, 7150-7155	9.4	47
124	Acyclic Amido-Containing Silanechalcogenones. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 3821-3824	2.3	13

123	An Approach to the Efficient Syntheses of Chiral Phosphino- Carboxylic Acid Esters. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 3297-3302	5.6	12
122	Isomerization of Secondary Phosphirane into Terminal Phosphinidene Complexes: An Analogy between Monovalent Phosphorus and Transition Metals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 12891-3	16.4	17
121	Instability of metal 1,3-benzodi(thiophosphinoyl)methandiide complexes: formation of hafnium, tin and zirconium complexes of 1,3-benzodi(thiophosphinoyl)thioketone dianionic ligand [1,3-C6H4(PhPS)2CS](2(-)). <i>Dalton Transactions</i> , 2015 , 44, 12633-9	4.3	4
120	Amidinate-Stabilized Group 9 Metal-Silicon(I) Dimer and -Silylene Complexes. <i>Inorganic Chemistry</i> , 2015 , 54, 9968-75	5.1	24
119	Pd-catalyzed enantiodivergent and regiospecific phospha-Michael addition of diphenylphosphine to 4-oxo-enamides: efficient access to chiral phosphinocarboxamides and their analogues. <i>Chemistry - A European Journal</i> , 2015 , 21, 4800-4	4.8	29
118	Synthesis, structural studies and ligand influence on the stability of aryl-NHC stabilised trimethylaluminium complexes. <i>Dalton Transactions</i> , 2015 , 44, 15166-74	4.3	14
117	1,5,9-Triaza-2,6,10-triphenylboracoronene: BN-embedded analogue of coronene. <i>Organic Letters</i> , 2015 , 17, 560-3	6.2	63
116	Asymmetric synthesis of P-stereogenic diarylphosphinites by palladium-catalyzed enantioselective addition of diarylphosphines to benzoquinones. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4865-8	16.4	87
115	Heteroleptic Germanium(II) and Tin(II) Chlorides Supported by Anionic Ligands Derived from 2,3-Dimethyl-1,4-diaza-1,3-butadiene. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 526-532	2.3	12
114	Co6(B-OH)6 cluster based coordination polymer as an effective heterogeneous catalyst for aerobic epoxidation of alkenes. <i>Dalton Transactions</i> , 2014 , 43, 2559-65	4.3	51
113	Development of a novel chiral palladacycle and its application in asymmetric hydrophosphination reaction. <i>Dalton Transactions</i> , 2014 , 43, 5777-84	4.3	15
112	Palladacycle catalyzed asymmetric P-H addition of diarylphosphines to N-enoyl phthalimides. <i>Chemistry - A European Journal</i> , 2014 , 20, 14514-7	4.8	22
111	Enantioselective phospha-Michael addition of diarylphosphines to IL Insaturated Exetoesters and amides. <i>Chemical Communications</i> , 2014 , 50, 8768-70	5.8	35
110	Polysubstituted pyrrole derivatives via 1,2-alkenyl migration of novel 日mino-田unsaturated aldehydes and Ediazocarbonyls. <i>RSC Advances</i> , 2014 , 4, 7275	3.7	5
109	1,2,4,3-Triazaborole-based neutral oxoborane stabilized by a Lewis acid. <i>Chemical Communications</i> , 2014 , 50, 8561-4	5.8	35
108	Synthesis and structural characterization of a Claumulene including 4-pyridylidene units, and its reactivity towards ammonia-borane. <i>Chemical Communications</i> , 2014 , 50, 12378-81	5.8	17
107	A highly efficient dual catalysis approach for C-glycosylation: addition of (o-azaaryl)carboxaldehyde to glycals. <i>Chemical Communications</i> , 2014 , 50, 13391-3	5.8	31
106	The Evolution of Terminal Allylphosphinidene Pentacarbonyltungsten Complex. <i>Phosphorus, Sulfur and Silicon and the Related Elements</i> , 2014 , 189, 908-913	1	1

105	Isolation of a bis(oxazol-2-ylidene)-phenylborylene adduct and its reactivity as a boron-centered nucleophile. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9280-3	16.4	115
104	Modifying the Chemistry of the Phosphole Dienic System by ∰inylation. <i>Organometallics</i> , 2014 , 33, 4245-4250	3.8	2
103	Asymmetric Construction of a Ferrocenyl Phosphapalladacycle from Achiral Enones and a Demonstration of Its Catalytic Potential. <i>Organometallics</i> , 2014 , 33, 5074-5076	3.8	17
102	Synthesis, Optical Resolution, and Stereochemical Properties of a Rationally Designed Chiral CN Palladacycle. <i>Organometallics</i> , 2014 , 33, 930-940	3.8	9
101	Stereoelectronic and Catalytic Properties of Chiral Cyclometalated Phospha-palladium and -platinum Complexes. <i>Organometallics</i> , 2014 , 33, 6053-6058	3.8	19
100	A one-pot diastereoselective self assembly of C-stereogenic copper(I) diphosphine clusters. <i>Inorganic Chemistry</i> , 2014 , 53, 10232-9	5.1	8
99	A Base-Stabilized Silyliumylidene Cation as a Ligand for Rhodium and Tungsten Complexes. <i>Organometallics</i> , 2014 , 33, 3646-3648	3.8	22
98	Group II metal complexes of the germylidendiide dianion radical and germylidenide anion. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 8455-8	16.4	18
97	Mechanistic Insights into the PdII-Catalyzed Chemoselective N-Demethylation vs. Cyclometalation Reactivity Pathways in 1-Aryl-N,N-dimethylethanamines. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 5046-5052	2.3	6
96	Metal-free Ebond metathesis in ammonia activation by a diazadiphosphapentalene. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16764-7	16.4	55
95	Isolation of an imino-N-heterocyclic carbene/germanium(0) adduct: a mesoionic germylene equivalent. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13106-9	16.4	45
94	Electrochemically Controlled One-Electron Oxidation Coupled to Consecutive Hydrogen Atom Transfer of Caffeine. <i>ChemElectroChem</i> , 2014 , 1, 1557-1562	4.3	9
93	Synthesis and Reactivity of Cationic Iridium Aminocarbenes Derived from Terminal Alkynes and 2-Aminopyridines. <i>Organometallics</i> , 2013 , 32, 4149-4152	3.8	10
92	Selective arylation and vinylation at the position of vinylarenes. <i>Chemistry - A European Journal</i> , 2013 , 19, 3504-11	4.8	33
91	Highly active catalysts of bisphosphine oxides for asymmetric Heck reaction. <i>Chemical Communications</i> , 2013 , 49, 9425-7	5.8	56
90	Synthesis and characterization of conformationally rigid chiral pyridine-N-heterocyclic carbene-based palladacycles with an unexpected Pd-N bond cleavage. <i>Chirality</i> , 2013 , 25, 149-59	2.1	5
89	Annelation of Phosphole-Substituted Fischer Carbene Complexes by Alkynes. <i>Organometallics</i> , 2013 , 32, 7482-7486	3.8	4
88	A silyliumylidene cation stabilized by an amidinate ligand and 4-dimethylaminopyridine. <i>Chemistry - A European Journal</i> , 2013 , 19, 11786-90	4.8	47

sulfur-functionalised N-heterocyclic carbene complexes of palladium and platinum. Chemistry - A

Reactivity of a Tin(II) 1,3-Benzodi(thiophosphinoyl)methanediide Complex toward Gallium,

Germanium, and Zinc Compounds. Organometallics, 2013, 32, 2643-2648

4.8

3.8

14

European Journal, 2013, 19, 5468-75

71

70

69	A base-stabilized lead(I) dimer and an aromatic plumbylidenide anion. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 6298-301	16.4	30
68	Palladacycle-Catalyzed Tandem Allylic Amination/Allylation Protocol for One-Pot Synthesis of 2-Allylanilines from Allylic Alcohols. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 83-87	5.6	29
67	Asymmetric synthesis of enaminophosphines via palladacycle-catalyzed addition of Ph2PH to <code>#unsaturated</code> imines. <i>Journal of Organic Chemistry</i> , 2012 , 77, 6849-54	4.2	62
66	Role of Steric Strain in the Chemistry of Phosphiranes. <i>Organometallics</i> , 2012 , 31, 8456-8458	3.8	4
65	Reaction of Terminal Phosphinidene Complexes with Dihydrogen. <i>Organometallics</i> , 2012 , 31, 2936-2939	9 3.8	20
64	Reactivity of a Distannylene toward Potassium Graphite: Synthesis of a Stannylidenide Anion. <i>Organometallics</i> , 2012 , 31, 6415-6419	3.8	38
63	Palladacycle-catalyzed asymmetric hydrophosphination of enones for synthesis of C*- and P*-chiral tertiary phosphines. <i>Inorganic Chemistry</i> , 2012 , 51, 2533-40	5.1	79
62	Reactivity of Cycloplatinated Amine Complexes: Intramolecular CI Bond Formation, CH Activation, and PPh2 Migration in Coordinated Alkynylphosphines. <i>Organometallics</i> , 2012 , 31, 8407-841	3 ^{3.8}	7
61	Synthesis of a Tin(II) 1,3-Benzobis(thiophosphinoyl)methanediide Complex and Its Reactions with Aluminum Compounds. <i>Organometallics</i> , 2012 , 31, 6538-6546	3.8	18
60	Experimental and theoretical studies on pyrene-grafted polyoxometalate hybrid. <i>Dalton Transactions</i> , 2012 , 41, 12185-91	4.3	30
59	Significant gas uptake enhancement by post-exchange of zinc(II) with copper(II) within a metal-organic framework. <i>Chemical Communications</i> , 2012 , 48, 10286-8	5.8	102
58	New thioether dithiolate complexes of Cp*Ir and some reactivity features. <i>Journal of Organometallic Chemistry</i> , 2012 , 696, 4207-4214	2.3	1
57	Asymmetric hydroarsination reactions toward synthesis of alcohol functionalised C-chiral As P ligands promoted by chiral cyclometallated complexes. <i>Journal of Organometallic Chemistry</i> , 2012 , 696, 4215-4220	2.3	13
56	Palladacycle-Catalyzed Asymmetric Intermolecular Construction of Chiral Tertiary P-Heterocycles by Stepwise Addition of HPH Bonds to Bis(enones). <i>Organometallics</i> , 2012 , 31, 4871-4875	3.8	53
55	Chiral cyclopalladated complex promoted asymmetric synthesis of diester-substituted P,N-ligands via stepwise hydrophosphination and hydroamination reactions. <i>Dalton Transactions</i> , 2012 , 41, 5391-40	04.3	22
54	Reactivity of a tin(II) (iminophosphinoyl)(thiophosphinoyl)methanediide complex toward sulfur: synthesis and 119Sn M\(\beta\)sbauer spectroscopic studies of \[{(E\)S)C(PPh2?NSiMe3)(PPh2?S)}3Sn(\(\beta\)-S)]. Inorganic Chemistry, 2012 , 51, 3996-4001	5.1	11
53	Reactivity of a Tin(II) (Iminophosphinoyl)(thiophosphinoyl)methanediide Complex toward Isocyanates and Rhodium(I) Chloride. <i>Organometallics</i> , 2012 , 31, 3888-3893	3.8	10
52	Chiral Phosphapalladacycles as Efficient Catalysts for the Asymmetric Hydrophosphination of Substituted Methylidenemalonate Esters: Direct Access to Functionalized Tertiary Chiral Phosphines Organometallics 2012, 31, 3022-3026	3.8	60

51	Intermolecular Insertion of Dialkynylphosphanes into the MI Bond of Cyclopalladated Rings through Activation by Cyclometallated Amines. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 1823-1831	2.3	4
50	Intermolecular Mizoroki-Heck reaction of aliphatic olefins with high selectivity for substitution at the internal position. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5915-9	16.4	87
49	Direct synthesis of chiral tertiary diphosphines via Pd(II)-catalyzed asymmetric hydrophosphination of dienones. <i>Organic Letters</i> , 2011 , 13, 5862-5	6.2	99
48	Synthesis of Homo- and Hetero-Bimetallic Arsenic Complexes by Means of Regioselective Monoinsertion of Alkynylarsane into the Pdt Bond of a Palladacycle. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 3111-3121	2.3	9
47	Asymmetric Synthesis of P-Stereogenic Homo- and Heterobimetallic Complexes via Selective Monoinsertion of Dialkynylphosphine into the Pdt Bond of a Palladacycle. <i>Organometallics</i> , 2011 , 30, 1530-1550	3.8	11
46	Ru4(CO)8(EOOCAd)4(PPh3)2: Phosphine Derivative of an Electron-Deficient Linear Tetraruthenium Cluster. <i>Organometallics</i> , 2011 , 30, 6774-6777	3.8	10
45	Chiral palladacycle promoted asymmetric synthesis of functionalized bis-phosphine monoxide ligand. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 709-714	2.3	7
44	Palladacycle mediated synthesis of cyano-functionalized chiral 1,2-diphosphine and subsequent functional group transformations. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 905-912	2.3	5
43	Palladium(II)-catalyzed asymmetric hydrophosphination of enones: efficient access to chiral tertiary phosphines. <i>Chemical Communications</i> , 2010 , 46, 6950-2	5.8	103
42	Syntheses of Bimetallic Zwitterionic Complexes Containing Stereogenic Bifunctionalized Phosphine through Stepwise Insertion and Hydration Reactions. <i>Organometallics</i> , 2010 , 29, 893-903	3.8	6
41	Asymmetric synthesis of functionalized 1,3-diphosphines via chiral palladium complex promoted hydrophosphination of activated olefins. <i>Inorganic Chemistry</i> , 2010 , 49, 989-96	5.1	25
40	Palladium Template Promoted Asymmetric Synthesis of 1,2-Diphosphines by Hydrophosphination of Functionalized Allenes. <i>Organometallics</i> , 2010 , 29, 536-542	3.8	23
39	Asymmetric Synthesis of New Diphosphines and Pyridylphosphines via a Kinetic Resolution Process Promoted and Controlled by a Chiral Palladacycle. <i>Organometallics</i> , 2010 , 29, 3374-3386	3.8	27
38	Synthesis and Characterisation of a Novel Chiral Bidentate Pyridine-N-Heterocyclic Carbene-Based Palladacycle. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1413-1418	2.3	16
37	Abnormal N-Heterocyclic Carbene Promoted SuzukiMiyaura Coupling Reaction: A Comparative Study. <i>Organometallics</i> , 2010 , 29, 6343-6349	3.8	81
36	Novel Synthesis of Chiral 1,3-Diphosphines via Palladium Template Promoted Hydrophosphination and Functional Group Transformation Reactions. <i>Organometallics</i> , 2010 , 29, 3582-3588	3.8	18
35	Well-Defined N-Heterocyclic Carbene Based Ruthenium Catalysts for Direct Amide Synthesis from Alcohols and Amines. <i>Organometallics</i> , 2010 , 29, 1374-1378	3.8	155
34	Metal Effects on the Asymmetric Synthesis of a New Heterobidentate As/P=S Ligand. <i>European Journal of Inorganic Chemistry</i> , 2010 , 2010, 1865-1871	2.3	6

33	Synthesis of a Chiral Palladacycle and Its Application in Asymmetric Hydrophosphanation Reactions. European Journal of Inorganic Chemistry, 2010 , 2010, 4427-4437	14
32	Synthesis of 2,5-Disubstituted Pyrrolidines from N-Alkenyl and Alkynyl N-Benzoyloxysulfonamides Catalyzed by (CuOTf)2. <i>Bulletin of the Korean Chemical Society</i> , 2010 , 31, 563-569	10
31	Rational Design of a Novel Chiral Palladacycle: Synthesis, Optical Resolution, and Stereochemical Evaluation. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 267-276	17
30	A Cyclometallated (Azobenzene)palladium(II) Complex of 1,4,7-Trithiacyclononane: Synthesis and Reactivity with Thioether-Dithiolate Metalloligands, Single-Crystal X-ray Diffraction Analyses and 2.3 Electrochemical Studies. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 2282-2293	12
29	Enantioselective, High-Yielding Synthesis of Alcohol-Functionalized Diphosphanes Utilizing Asymmetric Control with a Chiral Auxiliary. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 2375-2382	14
28	Novel Enantioselective Synthesis of Functionalized Pyridylarsanes by a Chiral Palladium Template Promoted Asymmetric Hydroarsanation Reaction. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2.3 2009, 4134-4140	16
27	Unusual domino michael/aldol condensation reactions employing oximes as N-selective nucleophiles: synthesis of N-hydroxypyrroles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 758-6 ¹ 6.4	47
26	Template effects on the asymmetric cycloaddition reaction between 3,4-dimethyl-1-phenylarsole and diphenylvinylphosphine and their arsenic elimination reaction. <i>Journal of Organometallic</i> 2.3 <i>Chemistry</i> , 2009 , 694, 1929-1933	7
25	Asymmetric synthesis of 1,2-bis(diphenylphosphino)-1-phenylethane via a chiral palladium template promoted hydrophosphination reaction. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 3500-3305	5 19
24	Synthesis and Structure of [Li2C(PPh2?NSiMe3)(PPh2?S)]: A Geminal Dianionic Ligand. Organometallics, 2009, 28, 4617-4620 3.8	32
23	Organoplatinum complex promoted the asymmetric endo stereochemically controlled Diels-Alder reaction between 3-diphenylphosphinofuran and diphenylvinylphosphine. <i>Inorganic Chemistry</i> , 5.1 2009 , 48, 11394-8	14
22	Synthesis, Coordination Characteristics, Conformational Behavior, and Bond Reactivity Studies of a Novel Chiral Phosphapalladacycle Complex. <i>Organometallics</i> , 2009 , 28, 4358-4370	11
21	Stepwise Functionalization of Two Alkyne Moieties in a Dialkynylphosphine Complex Leading to the Formation of a Bifunctionalized Phosphine Complex Bearing a Stereogenic Center at Phosphorus. 3.8 Organometallics, 2009, 28, 6266-6274	7
20	Asymmetric synthesis of diphosphine ligands containing phosphorus and carbon stereogenic centers by means of a chiral palladium complex promoted hydrophosphination reaction. <i>Inorganic</i> 5.1 <i>Chemistry</i> , 2009 , 48, 5535-9	32
19	Chelation-assisted carbon-halogen bond activation by a rhodium(I) complex. <i>Inorganic Chemistry</i> , 2009 , 48, 1198-206	24
18	Enantioselective DielsAlder Reaction of 3-Diphenylphosphinofuran with 1-Phenyl-3,4-dimethylphosphole and Subsequent Synthetic Manipulations of the Cycloadduct. 3.8 Organometallics, 2009, 28, 6254-6259	21
17	Metal Effects on the Asymmetric Cycloaddition Reaction between 3,4-Dimethyl-1-phenylarsole and Diphenylvinylphosphine Oxide. <i>Organometallics</i> , 2009 , 28, 4886-4889	24
16	Asymmetric Synthesis of Functionalized 1,2-Diphosphine via the Chemoselective Hydrophosphination of Coordinated Allylic Phosphines. <i>Organometallics</i> , 2009 , 28, 780-786	28

15	Highly Enantioselective Synthesis of (2-Pyridyl)phosphine Based C-Chiral Unsymmetrical P,N-Ligands Using a Chiral Palladium Complex. <i>Organometallics</i> , 2009 , 28, 3941-3946	3.8	38
14	Controllable synthesis of P-chiral 1,2- and 1,3-diphosphines via asymmetric Diels-Alder reactions involving functionalized allylic phosphines as dienophiles. <i>Dalton Transactions</i> , 2009 , 3668-70	4.3	13
13	Iridium Abnormal N-Heterocyclic Carbene Hydrides via Highly Selective Cℍ Activation. Organometallics, 2008 , 27, 1187-1192	3.8	42
12	Hydrogen bonding-assisted tautomerization of pyridine moieties in the coordination sphere of an Ir(I) complex. <i>Chemical Communications</i> , 2008 , 3558-60	5.8	34
11	Synthesis, structures, and solution dynamics of palladium complexes of quinoline-functionalized N-heterocyclic carbenes. <i>Inorganic Chemistry</i> , 2008 , 47, 8031-43	5.1	47
10	Organocatalytic asymmetric tandem Michael-Henry reactions: a highly stereoselective synthesis of multifunctionalized cyclohexanes with two quaternary stereocenters. <i>Organic Letters</i> , 2008 , 10, 2437-4	0 ^{6.2}	145
9	A Rare B Binding Mode of Aryloxides in Iridium, Rhodium, and Ruthenium Complexes. <i>Organometallics</i> , 2008 , 27, 6390-6392	3.8	15
8	Design, Synthesis, and Stereochemical Evaluation of a Novel Chiral Amine P alladacycle. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 1880-1891	2.3	18
7	Base controlled (1,1)- and (1,2)-hydrophosphination of functionalized alkynes. <i>Tetrahedron Letters</i> , 2008 , 49, 1762-1767	2	20
6	A novel asymmetric hydroarsination reaction promoted by a chiral organopalladium complex. <i>Inorganic Chemistry</i> , 2007 , 46, 4733-6	5.1	37
5	Synthesis and structural characterization of complexes of a DO3A-conjugated triphenylphosphonium cation with diagnostically important metal ions. <i>Inorganic Chemistry</i> , 2007 , 46, 8988-97	5.1	41
4	Cyclopalladation of the prochiral (di-tert-butyl)(diphenylmethyl)phosphine: kinetic lability of the corresponding (+)-phosphapalladacyclic Pd-C bond and the reluctance of the phosphine to bind in a monodentate fashion. <i>Inorganic Chemistry</i> , 2007 , 46, 5100-9	5.1	27
3	Novel stereochemistry, reactivity, and stability of an arsenic heterocycle in a metal-promoted asymmetric cycloaddition reaction. <i>Inorganic Chemistry</i> , 2007 , 46, 9488-94	5.1	33
2	A novel approach toward asymmetric synthesis of alcohol functionalized C-chiral diphosphines via two-stage hydrophosphination of terminal alkynols. <i>Inorganic Chemistry</i> , 2006 , 45, 7455-63	5.1	42
1	Asymmetric synthesis of a chiral arsinophosphine via a metal template promoted asymmetric DielsAlder reaction between diphenylvinylphosphine and 2-furyldiphenylarsine. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4753-4758	2.3	12