Helen Brindley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156790/publications.pdf

Version: 2024-02-01

331670 276875 58 1,820 21 41 citations h-index g-index papers 64 64 64 1938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Achieving Climate Change Absolute Accuracy in Orbit. Bulletin of the American Meteorological Society, 2013, 94, 1519-1539.	3.3	239
2	The Geostationary Earth Radiation Budget Project. Bulletin of the American Meteorological Society, 2005, 86, 945-960.	3.3	202
3	Optical properties of Saharan dust aerosol and contribution from the coarse mode as measured during the Fennec 2011 aircraft campaign. Atmospheric Chemistry and Physics, 2013, 13, 303-325.	4.9	172
4	Increases in greenhouse forcing inferred from the outgoing longwave radiation spectra of the Earth in 1970 and 1997. Nature, 2001, 410, 355-357.	27.8	146
5	The Farâ€infrared Earth. Reviews of Geophysics, 2008, 46, .	23.0	93
6	A critical evaluation of the ability of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) thermal infrared redâ€greenâ€blue rendering to identify dust events: Theoretical analysis. Journal of Geophysical Research, 2012, 117, .	3.3	81
7	An assessment of Saharan dust loading and the corresponding cloudâ€free longwave direct radiative effect from geostationary satellite observations. Journal of Geophysical Research, 2009, 114, .	3.3	67
8	Dust emission and transport over Iraq associated with the summer Shamal winds. Aeolian Research, 2017, 24, 15-31.	2.7	66
9	Impact of individual atmospheric parameters on CPV system power, energy yield and cost of energy. Progress in Photovoltaics: Research and Applications, 2014, 22, 1080-1095.	8.1	65
10	Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan. Progress in Photovoltaics: Research and Applications, 2013, 21, 1598-1610.	8.1	56
11	FORUM: Unique Far-Infrared Satellite Observations to Better Understand How Earth Radiates Energy to Space. Bulletin of the American Meteorological Society, 2020, 101, E2030-E2046.	3.3	40
12	Intercomparison of desert dust optical depth from satellite measurements. Atmospheric Measurement Techniques, 2012, 5, 1973-2002.	3.1	37
13	Diurnal cycle of the dust instantaneous direct radiative forcing over the Arabian Peninsula. Atmospheric Chemistry and Physics, 2015, 15, 9537-9553.	4.9	37
14	The impact of far i.r. absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolution. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 60, 151-180.	2.3	36
15	Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015). Atmospheric Chemistry and Physics, 2017, 17, 3987-4003.	4.9	34
16	An inter-comparison of far-infrared line-by-line radiative transfer models. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 90, 323-341.	2.3	29
17	Comparison of GERB instantaneous radiance and flux products with CERES Edition-2 data. Remote Sensing of Environment, 2009, 113, 102-114.	11.0	26
18	An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,862-10,878.	3.3	24

#	Article	IF	Citations
19	The Spectral Signature of Recent Climate Change. Current Climate Change Reports, 2016, 2, 112-126.	8.6	24
20	The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low. Atmospheric Chemistry and Physics, 2016, 16, 3563-3575.	4.9	24
21	Unfiltering of the Geostationary Earth Radiation Budget (GERB) Data. Part I: Shortwave Radiation. Journal of Atmospheric and Oceanic Technology, 2008, 25, 1087-1105.	1.3	23
22	Multiâ€sensor satellite remote sensing of dust aerosols over North Africa during GERBILS. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 1168-1178.	2.7	23
23	The sensitivity of the colour of dust in MSG-SEVIRI Desert Dust infrared composite imagery to surface and atmospheric conditions. Atmospheric Chemistry and Physics, 2019, 19, 6893-6911.	4.9	21
24	The daytime cycle in dust aerosol direct radiative effects observed in the central Sahara during the Fennec campaign in June 2011. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,861.	3.3	18
25	The influence of dust optical properties on the colour of simulated MSG-SEVIRI Desert Dust infrared imagery. Atmospheric Chemistry and Physics, 2018, 18, 9681-9703.	4.9	18
26	Mineral dust aerosol net direct radiative effect during GERBILS field campaign period derived from SEVIRI and GERB. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4070-4086.	3.3	16
27	On the Detection of Robust Multidecadal Changes in Earth's Outgoing Longwave Radiation Spectrum. Journal of Climate, 2016, 29, 4939-4947.	3.2	16
28	Downwelling solar irradiance in the biomass burning region of the southern Amazon: Dependence on aerosol intensive optical properties and role of water vapor. Journal of Geophysical Research, 2011, 116, .	3.3	14
29	Spectral Signatures of Earth's Climate Variability over 5 Years from IASI. Journal of Climate, 2015, 28, 1649-1660.	3.2	14
30	Insights into the diurnal cycle of global Earth outgoing radiation using aÂnumerical weather prediction model. Atmospheric Chemistry and Physics, 2018, 18, 5129-5145.	4.9	12
31	Systems Analysis for Thermal Infrared †THz Torch†Mapplications. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 474-495.	2.2	11
32	Retrievals of the Far Infrared Surface Emissivity Over the Greenland Plateau Using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). Journal of Geophysical Research D: Atmospheres, 2017, 122, 12,152.	3.3	11
33	Simulations of the effects of interannual and decadal variability on the clearâ€sky outgoing longâ€wave radiation spectrum. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2971-2988.	2.7	10
34	Variation in spectral irradiance and the consequences for multi-junction concentrator photovoltaic systems. , 2010, , .		9
35	A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared. Atmospheric Chemistry and Physics, 2020, 20, 12889-12903.	4.9	9
36	Spaceborne Middle―and Farâ€Infrared Observations Improving Nighttime Ice Cloud Property Retrievals. Geophysical Research Letters, 2020, 47, e2020GL087491.	4.0	8

#	Article	IF	Citations
37	Developing automated methods to estimate spectrally resolved direct normal irradiance for solar energy applications. Renewable Energy, 2021, 173, 1070-1086.	8.9	8
38	Quantifying the impact of individual atmospheric parameters on CPV system power and energy yield. , 2012, , .		7
39	Evaluation of thermal and dynamic impacts of summer dust aerosols on the Red Sea. Journal of Geophysical Research: Oceans, 2017, 122, 1325-1346.	2.6	7
40	Cirrus Cloud Identification from Airborne Far-Infrared and Mid-Infrared Spectra. Remote Sensing, 2020, 12, 2097.	4.0	7
41	Climate variability and trends from operational satellite spectral data. Geophysical Research Letters, 1998, 25, 3975-3978.	4.0	6
42	The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite. Acta Astronautica, 2003, 53, 909-915.	3.2	6
43	A study of the time evolution of GERB shortwave calibration by comparison with CERES Edition-3A data. Remote Sensing of Environment, 2016, 186, 416-427.	11.0	5
44	Observed and CMIP5â€Simulated Radiative Flux Variability Over West Africa. Earth and Space Science, 2020, 7, e2019EA001017.	2.6	5
45	Assessing the Errors in Shortwave Radiative Fluxes Inferred from the Geostationary Earth Radiation Budget (GERB) Instrument in the Presence of Dust Aerosol. Journal of Applied Meteorology and Climatology, 2008, 47, 1659-1680.	1.5	4
46	Retrievals of Highâ€Latitude Surface Emissivity Across the Infrared From Highâ€Altitude Aircraft Flights. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033672.	3.3	4
47	Contrasting Observed Atmospheric Responses to Tropical Sea Surface Temperature Warming Patterns. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033564.	3.3	4
48	COVID-19 lockdown air quality change implications for solar energy generation over China. Environmental Research Letters, 2021, 16, 024029.	5.2	4
49	Emissivity retrievals with FORUM's end-to-end simulator: challenges and recommendations. Atmospheric Measurement Techniques, 2022, 15, 1755-1777.	3.1	4
50	Solar Cooking in the Sahel. Bulletin of the American Meteorological Society, 2014, 95, 1325-1328.	3.3	3
51	The Far Infrared FTS for the FORUM Mission. , 2016, , .		3
52	Can downwelling far-infrared radiances over Antarctica be estimated from mid-infrared information?. Atmospheric Chemistry and Physics, 2019, 19, 7927-7937.	4.9	3
53	Characterizing energy budget variability at a Sahelian site: a test of NWP model behaviour. Atmospheric Chemistry and Physics, 2017, 17, 15095-15119.	4.9	2
54	Traceable radiometry underpinning terrestrial and heliostudies (truths): a bencmark mission for climate. , 2017, , .		2

#	Article	IF	CITATIONS
55	The Direct Cloudâ€free Longwave Radiative Effect of Saharan Dust as observed by the Geostationary Earth Radiation Budget (GERB) Experiment. , 2009, , .		O
56	Optimal bandgap combinations & Does material quality matter?., 2011, , .		0
57	Spectrally resolved radiative observations of the Earth in the Far-Infrared using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). , 2018, , .		O
58	Retrieval of Tropospheric Water Vapor From Airborne Farâ€Infrared Measurements: A Case Study. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	O