
R Alison Adcock

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Remembering Election Night 2016: Subjective but not objective metrics of autobiographical memory vary with political affiliation, affective valence, and surprise Journal of Experimental Psychology: General, 2022, 151, 390-409.	2.1	3
2	Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. NeuroImage, 2021, 237, 118207.	4.2	22
3	Pairing facts with imagined consequences improves pandemic-related risk perception. Proceedings of the United States of America, 2021, 118, .	7.1	30
4	Imagining a personalized scenario selectively increases perceived risk of viral transmission for older adults. Nature Aging, 2021, 1, 677-683.	11.6	10
5	Using fMRI neurofeedback to interrogate emotion, motivation, and social neurocognition. , 2021, , 131-160.		0
6	Prediction errors disrupt hippocampal representations and update episodic memories. Proceedings of the United States of America, 2021, 118, .	7.1	32
7	Can we predict realâ€ŧime <scp>fMRI</scp> neurofeedback learning success from pretraining brain activity?. Human Brain Mapping, 2020, 41, 3839-3854.	3.6	27
8	Pyneal: Open Source Real-Time fMRI Software. Frontiers in Neuroscience, 2020, 14, 900.	2.8	7
9	Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 2020, 582, 84-88.	27.8	634
10	2.19 HARNESSING PERFECTIONISM: THE ROLE OF EMOTION REGULATION AND REWARD EXPERIENCE. Journal of the American Academy of Child and Adolescent Psychiatry, 2019, 58, S177.	0.5	0
11	Enhancing activation in the right temporoparietal junction using theta-burst stimulation: Disambiguating between two hypotheses of top-down control of behavioral mimicry. PLoS ONE, 2019, 14, e0211279.	2.5	7
12	Expected Reward Value and Reward Uncertainty Have Temporally Dissociable Effects on Memory Formation. Journal of Cognitive Neuroscience, 2019, 31, 1443-1454.	2.3	27
13	Motivated Memory. , 2019, , 517-546.		3
14	144. Cognitive Neurostimulation: Volitional Regulation of Ventral Tegmental Area. Biological Psychiatry, 2019, 85, S60.	1.3	0
15	Large-Scale Network Topology Reveals Heterogeneity in Individuals With at Risk Mental State for Psychosis: Findings From the Longitudinal Youth-at-Risk Study. Cerebral Cortex, 2018, 28, 4234-4243.	2.9	16
16	Relating Sensory, Cognitive, and Neural Factors to Older Persons' Perceptions about Happiness: An Exploratory Study. Journal of Aging Research, 2018, 2018, 1-11.	0.9	3
17	T157. Using Real-Time fMRI Neurofeedback as a Tool for Demonstrating Therapeutic Efficacy. Biological Psychiatry, 2018, 83, S189.	1.3	0
18	Single session real-time fMRI neurofeedback has a lasting impact on cognitive behavioral therapy strategies. NeuroImage: Clinical, 2018, 19, 868-875.	2.7	55

R ALISON ADCOCK

#	Article	IF	CITATIONS
19	Motivational valence alters memory formation without altering exploration of a real-life spatial environment. PLoS ONE, 2018, 13, e0193506.	2.5	6
20	Hippocampus and Prefrontal Cortex Predict Distinct Timescales of Activation in the Human Ventral Tegmental Area. Cerebral Cortex, 2017, 27, bhw005.	2.9	22
21	Individual differences in regulatory focus predict neural response to reward. Social Neuroscience, 2017, 12, 419-429.	1.3	13
22	Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. Journal of Neuroscience, 2017, 37, 537-545.	3.6	3
23	Selectivity in Postencoding Connectivity with High-Level Visual Cortex Is Associated with Reward-Motivated Memory. Journal of Neuroscience, 2017, 37, 537-545.	3.6	113
24	Distinct Medial Temporal Lobe Network States as Neural Contexts for Motivated Memory Formation. , 2017, , 467-501.		30
25	Reward Anticipation Dynamics during Cognitive Control and Episodic Encoding: Implications for Dopamine. Frontiers in Human Neuroscience, 2016, 10, 555.	2.0	19
26	Distinct medial temporal networks encode surprise during motivation by reward versus punishment. Neurobiology of Learning and Memory, 2016, 134, 55-64.	1.9	42
27	Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation. Neuron, 2016, 89, 1331-1342.	8.1	76
28	Hippocampal and Insular Response to Smoking-Related Environments: Neuroimaging Evidence for Drug-Context Effects in Nicotine Dependence. Neuropsychopharmacology, 2016, 41, 877-885.	5.4	39
29	Lack of Evidence for Regional Brain Volume or Cortical Thickness Abnormalities in Youths at Clinical High Risk for Psychosis: Findings From the Longitudinal Youth at Risk Study: Table 1 Schizophrenia Bulletin, 2015, 41, 1285-1293.	4.3	51
30	Resting state networks distinguish human ventral tegmental area from substantia nigra. NeuroImage, 2014, 100, 580-589.	4.2	196
31	Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events. Cerebral Cortex, 2014, 24, 2160-2168.	2.9	123
32	ADHD, altered dopamine neurotransmission, and disrupted reinforcement processes: Implications for smoking and nicotine dependence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2014, 52, 70-78.	4.8	51
33	Altered Striatal Functional Connectivity in Subjects With an At-Risk Mental State for Psychosis. Schizophrenia Bulletin, 2014, 40, 904-913.	4.3	152
34	Context matters: The structure of task goals affects accuracy in multiple-target visual search. Applied Ergonomics, 2014, 45, 528-533.	3.1	17
35	Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective and Behavioral Neuroscience, 2014, 14, 443-472.	2.0	263
36	Size matters: How age and reaching experiences shape infants' preferences for different sized objects. , 2013, 36, 189-198.		31

R ALISON ADCOCK

#	Article	IF	CITATIONS
37	Preserved Working Memory and Altered Brain Activation in Persons at Risk for Psychosis. American Journal of Psychiatry, 2013, 170, 1297-1307.	7.2	27
38	Hippocampal networks habituate as novelty accumulates. Learning and Memory, 2013, 20, 229-235.	1.3	36
39	Threat of Punishment Motivates Memory Encoding via Amygdala, Not Midbrain, Interactions with the Medial Temporal Lobe. Journal of Neuroscience, 2012, 32, 8969-8976.	3.6	70
40	Electrophysiological and diffusion tensor imaging evidence of delayed corollary discharges in patients with schizophrenia. Psychological Medicine, 2011, 41, 959-969.	4.5	97
41	Reprint of: fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 2011, 49, 695-705.	1.6	45
42	Dorsolateral Prefrontal Cortex Drives Mesolimbic Dopaminergic Regions to Initiate Motivated Behavior. Journal of Neuroscience, 2011, 31, 10340-10346.	3.6	224
43	Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory. Learning and Memory, 2011, 18, 712-717.	1.3	56
44	fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 2010, 48, 3459-3469.	1.6	287
45	Functional Significance of Striatal Responses during Episodic Decisions: Recovery or Goal Attainment?. Journal of Neuroscience, 2010, 30, 4767-4775.	3.6	90
46	Dopamine and adaptive memory. Trends in Cognitive Sciences, 2010, 14, 464-472.	7.8	551
47	Timing is everything: Neural response dynamics during syllable processing and its relation to higher-order cognition in schizophrenia and healthy comparison subjects. International Journal of Psychophysiology, 2010, 75, 183-193.	1.0	47
48	Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 2009, 3, 21.	2.0	156
49	When Top-Down Meets Bottom-Up: Auditory Training Enhances Verbal Memory in Schizophrenia. Schizophrenia Bulletin, 2009, 35, 1132-1141.	4.3	180
50	Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron, 2006, 50, 507-517.	8.1	835
51	Remembrance of Rewards Past. Neuron, 2005, 45, 331-332.	8.1	8
52	Functional neuroanatomy of executive processes involved in dual-task performance. Proceedings of the United States of America, 2000, 97, 3567-3572.	7.1	80
53	Respiratory Sinus Arrhythmia and Cardiovascular Responses to Stress. Psychophysiology, 1992, 29, 461-470.	2.4	47
54	Caffeine effects on cardiovascular and neuroendocrine responses to acute psychosocial stress and their relationship to level of habitual caffeine consumption Psychosomatic Medicine, 1990, 52, 320-336.	2.0	112