
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156458/publications.pdf Version: 2024-02-01

IENC-YULIN

#	Article	IF	CITATIONS
1	Highly hydrophilic electrodeposited NiS/Ni3S2 interlaced nanosheets with surface-enriched Ni3+ sites as binder-free flexible cathodes for high-rate hybrid supercapacitors. Applied Surface Science, 2022, 579, 151923.	3.1	23
2	High-performance hybrid supercapacitors based on electrodeposited amorphous bimetallic nickel cobalt phosphide nanosheets. Journal of Alloys and Compounds, 2022, 897, 163031.	2.8	25
3	A tailor-made deep eutectic solvent for 2.2ÂV wide temperature-tolerant supercapacitors via optimization of N,N-dimethylformamide/water co-solvents. Journal of Power Sources, 2022, 521, 230954.	4.0	12
4	Co-solvent modified methylsulfonylmethane-based hybrid deep eutectic solvent electrolytes for high-voltage symmetric supercapacitors. Electrochimica Acta, 2022, 424, 140612.	2.6	3
5	Free-standing 3D core-shell architecture of Ni3S2@NiCoP as an efficient cathode material for hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 625, 565-575.	5.0	19
6	Enhanced activity and stability of MoS2 through enriching 1T-phase by covalent functionalization for energy conversion applications. Chemical Engineering Journal, 2021, 403, 126318.	6.6	63
7	Impact of titanium precursors on formation and electrochemical properties of Li4Ti5O12 anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2021, 25, 575-582.	1.2	8
8	Solâ€gel synthesized lithium orthosilicate as a reusable solid catalyst for biodiesel production. International Journal of Energy Research, 2021, 45, 6239-6249.	2.2	5
9	Optimization of acetonitrile/water content in hybrid deep eutectic solvent for graphene/MoS2 hydrogel-based supercapacitors. Chemical Engineering Journal, 2021, 405, 126706.	6.6	73
10	Spinel LiNi0.5Mn1.5O4 with ultra-thin Al2O3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature. Journal of Solid State Electrochemistry, 2021, 25, 2665-2674.	1.2	5
11	Potential Dependent Electrochemical Exfoliation of NiPS ₃ and Implications for Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 11992-11999.	2.5	19
12	Moderate-Concentration Fluorinated Electrolyte for High-Energy-Density Si//LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 16252-16261.	3.2	10
13	Potential-controlled pulse electrochemical deposition of poly nanostructural two-dimensional molybdenum disulfide thin films as a counter electrode for dye-sensitized solar cells. Surface and Coatings Technology, 2020, 394, 125855.	2.2	9
14	Potential-reversal electrodeposited MoS2 thin film as an efficient electrocatalytic material for bifacial dye-sensitized solar cells. Solar Energy, 2020, 206, 163-170.	2.9	16
15	Enhanced stability and efficiency of perovskite solar cells via bifunctional group passivation with thiosalicylic acid. Organic Electronics, 2020, 81, 105681.	1.4	18
16	Highly-porous hierarchically microstructure of graphene-decorated nickel foam supported two-dimensional quadrilateral shapes of cobalt sulfide nanosheets as efficient electrode for methanol oxidation. Surface and Coatings Technology, 2020, 393, 125850.	2.2	12
17	Electrodeposited NiSe on a forest of carbon nanotubes as a free-standing electrode for hybrid supercapacitors and overall water splitting. Journal of Colloid and Interface Science, 2020, 574, 300-311.	5.0	83
18	Temperature-controlled synthesis of spinel lithium nickel manganese oxide cathode materials for lithium-ion batteries. Ceramics International, 2020, 46, 20856-20864.	2.3	13

#	Article	IF	CITATIONS
19	The Applications of Polymers in Solar Cells: A Review. Polymers, 2019, 11, 143.	2.0	146
20	Laser printer patterned sacrificed layer for arbitrary design and scalable fabrication of the all-solid-state interdigitated in-planar hydrous ruthenium oxide flexible micro supercapacitors. Journal of Power Sources, 2019, 417, 108-116.	4.0	16
21	Electrodeposition of nanostructured TiO2 thin film as an efficient bifunctional layer for perovskite solar cells. Electrochimica Acta, 2019, 295, 662-667.	2.6	16
22	One-step hydrothermal synthesis of feather duster-like NiS@MoS2 with hierarchical array structure for the Pt-free dye-sensitized solar cell. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	12
23	Electrochemical formation of TiO2 porous layer for perovskite solar cells. Thin Solid Films, 2018, 660, 720-724.	0.8	5
24	Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors. Electrochimica Acta, 2018, 274, 208-216.	2.6	44
25	Investigation of carbon coating approach on electrochemical performance of Li4Ti5O12/C composite anodes for high-rate lithium-ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 1851-1861.	1.2	18
26	Ternary Composite Nanosheets with MoS ₂ /WS ₂ /Graphene Heterostructures as Highâ€Performance Cathode Materials for Supercapacitors. ChemElectroChem, 2018, 5, 1024-1031.	1.7	112
27	Effective iron-molybdenum-disulfide counter electrodes for use in platinum-free dye-sensitized solar cells. Science China Materials, 2018, 61, 1278-1284.	3.5	9
28	Pulse-reversal deposition of Ni3S2 thin films on carbon fiber cloths for supercapacitors. Surface and Coatings Technology, 2018, 350, 1003-1009.	2.2	9
29	Degradation of inhibitor in alkaline cleaning solution for post-Cu CMP cleaning. Surface and Coatings Technology, 2018, 350, 1080-1084.	2.2	21
30	Ultrathin 1T-phase MoS 2 nanosheets decorated hollow carbon microspheres as highly efficient catalysts for solar energy harvesting and storage. Journal of Power Sources, 2017, 345, 156-164.	4.0	62
31	Hollow Hierarchical Carbon Spheres Decorated with Ultrathin Molybdenum Disulfide Nanosheets as High apacity Electrode Materials for Asymmetric Supercapacitors. ChemElectroChem, 2017, 4, 620-627.	1.7	52
32	Enhanced Efficiency of Dye-Sensitized Solar Counter Electrodes Consisting of Two-Dimensional Nanostructural Molybdenum Disulfide Nanosheets Supported Pt Nanoparticles. Coatings, 2017, 7, 167.	1.2	11
33	Recent Development of Graphene-Based Cathode Materials for Dye-Sensitized Solar Cells. Journal of Nanomaterials, 2016, 2016, 1-21.	1.5	12
34	Exploring the main function of reduced graphene oxide nano-flakes in a nickel cobalt sulfide counter electrode for dye-sensitized solar cell. Journal of Power Sources, 2016, 332, 281-289.	4.0	30
35	Facile synthesis of an Al-doped carbon-coated Li ₄ Ti ₅ O ₁₂ anode for high-rate lithium-ion batteries. RSC Advances, 2016, 6, 77151-77160.	1.7	15
36	Scalable Fabrication of Efficient NiCo2S4 Counter Electrodes for Dye-sensitized Solar Cells Using a Facile Solution Approach. Electrochimica Acta, 2016, 222, 1410-1416.	2.6	10

#	Article	IF	CITATIONS
37	Effect of starting materials on electrochemical performance of sol-gel-synthesized Li4Ti5O12 anode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2016, 20, 1625-1631.	1.2	16
38	Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. Journal of Power Sources, 2016, 306, 171-177.	4.0	61
39	Flexible carbon nanotube/polypropylene composite plate decorated with poly(3,4-ethylenedioxythiophene) as efficient counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2015, 282, 348-357.	4.0	45
40	Molybdenum Disulfide/Reduced Graphene Oxide–Carbon Nanotube Hybrids as Efficient Catalytic Materials in Dye‣ensitized Solar Cells. ChemElectroChem, 2015, 2, 720-725.	1.7	38
41	Nickel sulfide counter electrodes enhanced by hydrosulphuric acid hydrothermal treatments for use in Pt-free dye-sensitized solar cells. Electrochimica Acta, 2015, 155, 103-109.	2.6	33
42	Cobalt sulfide counter electrodes enhanced by a hydro-thermal treatment for use in platinum-free dye-sensitized solar cells. Materials Research Bulletin, 2015, 68, 9-15.	2.7	17
43	A strategy to enhance overall efficiency for dye-sensitized solar cells with a transparent electrode of nickel sulfide decorated with poly(3,4-ethylenedioxythiophene). RSC Advances, 2015, 5, 43639-43647.	1.7	17
44	Glucose-Assisted Synthesis of Nickel-Cobalt Sulfide/Carbon Nanotube Composites as Efficient Cathode Materials for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A1493-A1499.	1.3	42
45	High-performance asymmetric supercapacitor based on Co 9 S 8 /3D graphene composite and graphene hydrogel. Chemical Engineering Journal, 2015, 279, 241-249.	6.6	75
46	Post-Treatment of Photoanodes Including Mesoporous TiO2Beads in Dye-Sensitized Solar Cells Using Pulsed Deposition Technique. Journal of the Electrochemical Society, 2015, 162, H780-H784.	1.3	3
47	Pulse-Reversal Deposition of Nickel Sulfide Thin Film as an Efficient Cathode Material for Hybrid Supercapacitors. Journal of the Electrochemical Society, 2015, 162, A2762-A2769.	1.3	22
48	Three-dimensional hollow platinum–nickel bimetallic nanoframes for use in dye-sensitized solar cells. Journal of Power Sources, 2015, 278, 149-155.	4.0	41
49	Rapid synthesis of tin oxide decorated carbon nanotube nanocomposities as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2014, 589, 472-478.	2.8	22
50	Bifunctional One-Dimensional Hierarchical Nanostructures Composed of Cobalt Sulfide Nanoclusters on Carbon Nanotubes Backbone for Dye-Sensitized Solar Cells and Supercapacitors. Journal of Physical Chemistry C, 2014, 118, 823-830.	1.5	54
51	Ni ₃ S ₂ /Ni–P Bilayer Coated on Polyimide as a Pt- and TCO-Free Flexible Counter Electrode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 3357-3364.	4.0	41
52	One-pot sol-gel synthesis of Li 4 Ti 5 O 12 /C anode materials for high-performance Li-ion batteries. Electrochimica Acta, 2014, 142, 43-50.	2.6	48
53	Investigation of carbon nanotubes decorated with cobalt sulfides of different phases as nanocomposite catalysts in dye-sensitized solar cells. Electrochimica Acta, 2014, 143, 216-221.	2.6	16
54	Hierarchical nickel sulfide/carbon nanotube nanocomposite as a catalytic material toward triiodine reduction in dye-sensitized solar cells. Journal of Power Sources, 2014, 270, 499-505.	4.0	36

#	Article	IF	CITATIONS
55	In situ electropolymerization of polyaniline/cobalt sulfide decorated carbon nanotube composite catalyst toward triiodide reduction in dye-sensitized solar cells. Journal of Power Sources, 2014, 266, 448-455.	4.0	38
56	Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 137, 721-727.	2.6	20
57	Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors. RSC Advances, 2013, 3, 2043-2048.	1.7	94
58	Characterization of polyaniline counter electrodes for dye-sensitized solar cells. Surface and Coatings Technology, 2013, 231, 171-175.	2.2	22
59	Hydrothermal synthesis of graphene flake embedded nanosheet-like molybdenum sulfide hybrids as counter electrode catalysts for dye-sensitized solar cells. Materials Chemistry and Physics, 2013, 143, 53-59.	2.0	49
60	Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique. Journal of Power Sources, 2013, 233, 320-325.	4.0	83
61	Facile synthesis of MoS3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Applied Catalysis B: Environmental, 2013, 134-135, 75-82.	10.8	124
62	High performance platinum-free counter electrode of molybdenum sulfide–carbon used in dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 1495-1501.	5.2	185
63	Electrophoretic deposition of transparent MoS2–graphene nanosheet composite films as counter electrodes in dye-sensitized solar cells. Chemical Communications, 2013, 49, 1440.	2.2	176
64	Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries. Electrochimica Acta, 2013, 87, 126-132.	2.6	100
65	A dual function of high performance counter-electrode for stable quasi-solid-state dye-sensitized solar cells. Journal of Power Sources, 2013, 241, 373-378.	4.0	35
66	Highly transparent NiCo2S4 thin film as an effective catalyst toward triiodide reduction in dye-sensitized solar cells. Electrochemistry Communications, 2013, 37, 11-14.	2.3	77
67	Cathodic Deposition of Flaky Nickel Sulfide Nanostructure as an Electroactive Material for High-Performance Supercapacitors. Journal of the Electrochemical Society, 2013, 160, D178-D182.	1.3	198
68	Pulse electrodeposition of CoS on MWCNT/Ti as a high performance counter electrode for a Pt-free dye-sensitized solar cell. Journal of Materials Chemistry A, 2013, 1, 1289-1295.	5.2	95
69	Optically transparent counter electrode for dye-sensitized solar cells based on cobalt sulfide nanosheet arrays. Electrochimica Acta, 2013, 107, 66-70.	2.6	34
70	Enhanced performance of low-cost dye-sensitized solar cells with pulse-electropolymerized polyaniline counter electrodes. Electrochimica Acta, 2013, 90, 468-474.	2.6	65
71	Hierarchically Structured Ni ₃ S ₂ /Carbon Nanotube Composites as High Performance Cathode Materials for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 12168-12174.	4.0	411
72	A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells. Electrochimica Acta, 2012, 85, 162-168.	2.6	152

#	Article	IF	CITATIONS
73	Electroless platinum counter electrodes with Pt-activated self-assembled monolayer on transparent conducting oxide. Surface and Coatings Technology, 2012, 206, 4672-4678.	2.2	12
74	Pulse electropolymerization of high performance PEDOT/MWCNT counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 19919.	6.7	189
75	Few-layer MoS2 nanosheets coated onto multi-walled carbon nanotubes as a low-cost and highly electrocatalytic counter electrode for dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 24753.	6.7	205
76	Pulse potentiostatic electropolymerization of high performance PEDOT counter electrodes for Pt-free dye-sensitized solar cells. Electrochimica Acta, 2012, 83, 221-226.	2.6	57
77	Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 21057.	6.7	210
78	Glucose Aided Preparation of Tungsten Sulfide/Multi-Wall Carbon Nanotube Hybrid and Use as Counter Electrode in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 6530-6536.	4.0	94
79	Multi-wall carbon nanotube counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. Journal of Solid State Electrochemistry, 2012, 16, 1415-1421.	1.2	27
80	Honeycomb-like CoS Counter Electrodes for Transparent Dye-Sensitized Solar Cells. Electrochemical and Solid-State Letters, 2011, 14, D41.	2.2	71
81	Synergic effect of benzotriazole and chloride ion on Cu passivation in a phosphate electrochemical mechanical planarization electrolyte. Electrochimica Acta, 2011, 56, 3303-3310.	2.6	15
82	A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochemistry Communications, 2011, 13, 977-980.	2.3	82
83	Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 8818-8826.	2.6	161
84	High-performance and low platinum loading electrodeposited-Pt counter electrodes for dye-sensitized solar cells. Electrochimica Acta, 2011, 56, 1941-1946.	2.6	44
85	Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials. Journal of Power Sources, 2011, 196, 6676-6681.	4.0	31
86	Mesoporous Electrodeposited-CoS Film as a Counter Electrode Catalyst in Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 159, D65-D71.	1.3	64
87	Investigation of agglomerated Cu seed on Cu oxidation after chemical mechanical planarization. Applied Surface Science, 2010, 257, 547-552.	3.1	3
88	Characterization of electroless Ni-based alloys for use in bipolar plates of direct methanol fuel cells. Surface and Coatings Technology, 2010, 205, 2251-2255.	2.2	12
89	Adsorption–desorption study of benzotriazole in a phosphate-based electrolyte for Cu electrochemical mechanical planarization. Electrochimica Acta, 2010, 55, 2325-2331.	2.6	13
90	Electroless Platinum Counter Electrode for Dye-Sensitized Solar Cells by Using Self-Assembly Monolayer Modification. Electrochemical and Solid-State Letters, 2010, 13, D77.	2.2	34

#	Article	IF	CITATIONS
91	Characterization of phosphate electrolytes for use in Cu electrochemical mechanical planarization. Electrochimica Acta, 2008, 53, 8211-8216.	2.6	24
92	Effect of the molecular weight of polyethylene glycol as single additive in copper deposition for interconnect metallization. Thin Solid Films, 2008, 516, 5046-5051.	0.8	38
93	Evaluation of post-Cu CMP cleaning of organic residues using microfluidic device. Electrochemistry Communications, 2008, 10, 677-680.	2.3	31
94	Effect of Impurity and Illumination on Copper Oxidation after Chemical Mechanical Polishing. Journal of the Electrochemical Society, 2008, 155, H620.	1.3	8
95	Adsorption and Desorption Studies of Glycine and Benzotriazole during Cu Oxidation in a Chemical Mechanical Polishing Bath. Journal of the Electrochemical Society, 2008, 155, H396.	1.3	14
96	Behavior of Copper Removal by CMP and Its Correlation to Deposit Structure and Impurity Content. Journal of the Electrochemical Society, 2008, 155, H21.	1.3	21
97	Effect of Impurity Distribution on Corrosion Behavior of Electrodeposited Copper in H[sub 2]O[sub 2]-Based Slurry. Journal of the Electrochemical Society, 2007, 154, H530.	1.3	9
98	Void Defect Reduction after Chemical Mechanical Planarization of Trenches Filled by Direct/Pulse Plating. Journal of the Electrochemical Society, 2007, 154, D139.	1.3	12
99	Impurities Induced Localized Corrosion Between Copper and Tantalum Nitride during Chemical Mechanical Planarization. Electrochemical and Solid-State Letters, 2007, 10, H23.	2.2	4