
Ganeshappa Sowmya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6156187/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Convective-radiative thermal investigation of a porous dovetail fin using spectral collocation method. Ain Shams Engineering Journal, 2023, 14, 101811.	6.1	14
2	Temperature distribution analysis in a fully wet moving radial porous fin by finite element method. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 453-468.	2.8	15
3	Heat transfer in a radial porous fin in the presence of magnetic field: a numerical study. International Journal of Ambient Energy, 2022, 43, 3402-3409.	2.5	8
4	Heat transfer analysis of an inclined porous fin using Differential Transform Method. International Journal of Ambient Energy, 2022, 43, 3189-3195.	2.5	17
5	Slip and radiative flow of shape-dependent dusty nanofluid over a melting stretching sheet. International Journal of Ambient Energy, 2022, 43, 4120-4131.	2.5	3
6	Thermal stresses and efficiency analysis of a radial porous fin with radiation and variable thermal conductivity and internal heat generation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 4751-4762.	3.6	8
7	Shape effect of nanoparticles on MHD nanofluid flow over a stretching sheet in the presence of heat source/sink with entropy generation. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 1643-1663.	2.8	34
8	Analysis of heat transfer through different profiled longitudinal porous fin by differential transformation method. Heat Transfer, 2022, 51, 2165-2180.	3.0	12
9	Effect of electromagnetic field on the thermal performance of longitudinal trapezoidal porous fin using DTM–Pade approximant. Heat Transfer, 2022, 51, 3313-3333.	3.0	17
10	LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Studies in Thermal Engineering, 2022, 35, 101846.	5.7	38
11	Analytical solution for temperature equation of a fin problem with variable temperature-dependent thermal properties: Application of LSM and DTM-Pade approximant. Chemical Physics Letters, 2022, 793, 139409.	2.6	15
12	Effects of stretching/shrinking on the thermal performance of a fully wetted convective-radiative longitudinal fin of exponential profile. Applied Mathematics and Mechanics (English Edition), 2022, 43, 389-402.	3.6	10
13	Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant. Symmetry, 2022, 14, 690.	2.2	22
14	Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime. International Journal of Numerical Methods for Heat and Fluid Flow, 2022, 32, 3388-3410.	2.8	10
15	Numerical investigation of ferromagnetic liquid film flow over an unsteady stretching surface in the presence of radiation and aligned magnetic field. Heat Transfer, 2022, 51, 4268-4285.	3.0	0
16	An unsteady thermal investigation of a wetted longitudinal porous fin of different profiles. Journal of Thermal Analysis and Calorimetry, 2021, 143, 2463-2474.	3.6	25
17	Magnetohydrodynamic flow of Williamson fluid in a microchannel for both horizontal and inclined loci with wall shear properties. Heat Transfer, 2021, 50, 1428-1442.	3.0	8
18	Heat transfer analysis of nanofluid flow in a channel with non-parallel walls. Journal of Mechanical Science and Technology, 2021, 35, 171-177.	1.5	18

#	Article	IF	CITATIONS
19	Significance of buoyancy and Lorentz forces on water-conveying iron(III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis. Journal of Thermal Analysis and Calorimetry, 2021, 144, 2369.	3.6	52
20	Effect of nonlinear radiation on flow and heat transfer of dusty fluid over a stretching cylinder with Cattaneo–Christov heat flux. International Journal of Modern Physics C, 2021, 32, .	1.7	6
21	Analysis of Transient Thermal Distribution in a Convective–Radiative Moving Rod Using Two-Dimensional Differential Transform Method with Multivariate Pade Approximant. Symmetry, 2021, 13, 1793.	2.2	34
22	The flow of fluid-particle suspension between two rotating stretchable disks with the effect of the external magnetic field. Physica Scripta, 2021, 96, 015214.	2.5	7
23	Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Studies in Thermal Engineering, 2021, 28, 101697.	5.7	30
24	Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Computer Methods and Programs in Biomedicine, 2020, 185, 105166.	4.7	114
25	Entropy generation analysis of multi-walled carbon nanotube dispersed nanoliquid in the presence of heat source through a vertical microchannel. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 5063-5085.	2.8	8
26	Thermal investigation of fully wet longitudinal porous fin of functionally graded material. International Journal of Numerical Methods for Heat and Fluid Flow, 2020, 30, 5087-5101.	2.8	11
27	Impact of Hall effect, nonlinear radiation and heat source on MHD Couette–Poiseuille flow of nanoliquid through a rotating channel. Multidiscipline Modeling in Materials and Structures, 2020, 16, 1457-1473.	1.3	7
28	Consequence of exponential heat generation on non-Darcy-Forchheimer flow of water based carbon nanotubes driven by a curved stretching sheet. Applied Mathematics and Mechanics (English Edition), 2020, 41, 1723-1734.	3.6	14
29	Nanoparticle shape effect on the thermal behaviour of moving longitudinal porous fin. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2020, 234, 115-121.	0.6	6
30	Thermal exploration of radial porous fin fully wetted with SWCNTs and MWCNTs along with temperature-dependent internal heat generation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 4945-4952.	2.1	10
31	Analysis of thermal behavior of moving longitudinal porous fin wetted with waterâ€based SWCNTs and MWCNTs. Heat Transfer, 2020, 49, 2044-2058.	3.0	12
32	Analysis of thermal behavior of a porous fin fully wetted with nanofluids: convection and radiation. Journal of Molecular Liquids, 2020, 307, 112920.	4.9	59
33	Investigation of <i>Ti6Al4V</i> and <i>AA</i> 7075 alloy embedded nanofluid flow over longitudinal porous fin in the presence of internal heat generation and convective condition. Communications in Theoretical Physics, 2020, 72, 025004.	2.5	35
34	Analysis of a fully wetted moving fin with temperatureâ€dependent internal heat generation using the finite element method. Heat Transfer, 2020, 49, 1939-1954.	3.0	13
35	Scrutinization of different shaped nanoparticle of molybdenum disulfide suspended nanofluid flow over a radial porous fin. International Journal of Numerical Methods for Heat and Fluid Flow, 2019, 30, 3685-3699.	2.8	29
36	Thermal performance of fully wet longitudinal porous fin with temperature-dependent thermal conductivity, surface emissivity and heat transfer coefficient. Multidiscipline Modeling in Materials and Structures, 2019, 16, 749-764.	1.3	15

#	Article	IF	CITATIONS
37	Inferring optimal proportion for efficient heat transfer and depleted entropy using MgO-Ag/water hybrid nanofluid over convectively heated stretching sheet embedded in a porous medium. Waves in Random and Complex Media, 0, , 1-25.	2.7	3
38	Thermal stress and temperature distribution of an annular fin with variable temperature-dependent thermal properties and magnetic field using DTM-Pade approximant. Waves in Random and Complex Media, 0, , 1-29.	2.7	17
39	Exploration of transient heat transfer through a moving plate with exponentially temperature-dependent thermal properties. Waves in Random and Complex Media, 0, , 1-19.	2.7	15
40	Heat transfer enhancement and entropy generation minimization using CNTs suspended nanofluid upon a convectively warmed moving wedge: An optimal case study. Heat Transfer, 0, , .	3.0	0
41	Impact of newtonian heating on dusty nanofluid flow over a riga plate embedded in porous medium. Waves in Random and Complex Media, 0, , 1-24.	2.7	2