
Tian-Hua Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155871/publications.pdf Version: 2024-02-01

ΤιλΝ-Ηυλ ΖΗΟΙΙ

#	Article	IF	CITATIONS
1	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	6.9	30
2	Postsynthetic Modification of Metalâ^'Organic Frameworks for Photocatalytic Applications. Small Structures, 2022, 3, .	6.9	3
3	Effect of N-donor ancillary ligand on zinc/cadmium-organic arsonates: Structural analysis and photoluminescence. Journal of Solid State Chemistry, 2022, 311, 123148.	1.4	1
4	Construction of Metal–Organic Frameworks with Various Zinc-Tetrazolate Nanotubes. Crystal Growth and Design, 2021, 21, 28-32.	1.4	10
5	Twoâ€Dimensional Covalentâ€Organic Frameworks for Photocatalysis: The Critical Roles of Building Block and Linkage. Solar Rrl, 2021, 5, 2000458.	3.1	40
6	Engineering nanointerface of molybdenum-based heterostructures to boost the electrocatalytic hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 58, 370-376.	7.1	18
7	Boosting CO ₂ electroreduction to CO with abundant nickel single atom active sites. Inorganic Chemistry Frontiers, 2021, 8, 2542-2548.	3.0	15
8	Co and Pt Dualâ€Singleâ€Atoms with Oxygenâ€Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials, 2021, 33, e2003327.	11.1	123
9	Metal-organic frameworks for electrochemical reduction of carbon dioxide: The role of metal centers. Journal of Energy Chemistry, 2020, 40, 156-170.	7.1	130
10	Oxygen doped g ₃ N ₄ with nitrogen vacancy for enhanced photocatalytic hydrogen evolution. Chemistry - an Asian Journal, 2020, 15, 3456-3461.	1.7	69
11	Hierarchical cobalt phenylphosphonate nanothorn flowers for enhanced electrocatalytic water oxidation at neutral pH. Chinese Journal of Catalysis, 2020, 41, 1654-1662.	6.9	12
12	2D Boron Imidazolate Framework Nanosheets with Electrocatalytic Applications for Oxygen Evolution and Carbon Dioxide Reduction Reaction. Small, 2020, 16, e1907669.	5.2	20
13	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie, 2020, 132, 9002-9006.	1.6	34
14	Autologous Cobalt Phosphates with Modulated Coordination Sites for Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2020, 59, 8917-8921.	7.2	89
15	Syntheses, crystal structures, and characterizations of a series of divalent metal carboxylate-phosphonates. Journal of Solid State Chemistry, 2020, 287, 121343.	1.4	1
16	Isolated Squareâ€Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO ₂ to CO. Angewandte Chemie, 2019, 131, 11878-11882.	1.6	32
17	Polyhedral metal cage for photocatalytic CO2 reduction. Science Bulletin, 2019, 64, 1729-1730.	4.3	6
18	Isolated Squareâ€Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2019, 58, 11752-11756.	7.2	194

TIAN-HUA ZHOU

#	Article	IF	CITATIONS
19	Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Metals, 2019, 38, 413-419.	3.6	68
20	Cobalt Boron Imidazolate Framework Derived Cobalt Nanoparticles Encapsulated in B/N Codoped Nanocarbon as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. Advanced Functional Materials, 2018, 28, 1801136.	7.8	155
21	Host–Guest and Photophysical Behavior of Ti ₈ L ₁₂ Cube with Encapsulated [Ti(H ₂ O) ₆] Species. Chemistry - A European Journal, 2018, 24, 14358-14362.	1.7	24
22	Phosphonate-Based Metal–Organic Framework Derived Co–P–C Hybrid as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Catalysis, 2017, 7, 6000-6007.	5.5	149
23	Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H ₂ Evolution and CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 7260-7268.	3.2	322
24	Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy and Environmental Science, 2016, 9, 2563-2570.	15.6	216
25	Micellization and Adsorption of Heterogemini Surfactants Containing a Hydroxyl Headgroup in Aqueous Solution. Journal of Chemical & Engineering Data, 2016, 61, 2915-2922.	1.0	11
26	A highly efficient noble metal free photocatalytic hydrogen evolution system containing MoP and CdS quantum dots. Nanoscale, 2016, 8, 14438-14447.	2.8	77
27	MoS3 loaded TiO2 nanoplates for photocatalytic water and carbon dioxide reduction. Journal of Energy Chemistry, 2016, 25, 500-506.	7.1	18
28	Polyoxometalate immobilized in MIL-101(Cr) as an efficient catalyst for water oxidation. Applied Catalysis A: General, 2016, 521, 83-89.	2.2	70
29	CdS quantum dots and tungsten carbide supported on anatase–rutile composite TiO ₂ for highly efficient visible-light-driven photocatalytic H ₂ evolution from water. Catalysis Science and Technology, 2016, 6, 2206-2213.	2.1	62
30	Recent progress in g-C ₃ N ₄ based low cost photocatalytic system: activity enhancement and emerging applications. Catalysis Science and Technology, 2015, 5, 5048-5061.	2.1	206
31	New thorium(<scp>iv</scp>)–arsonates with a [Th ₈ O ₁₃] ⁶⁺ octanuclear core. Dalton Transactions, 2015, 44, 13573-13580.	1.6	11
32	Waterâ€Soluble MoS ₃ Nanoparticles for Photocatalytic H ₂ Evolution. ChemSusChem, 2015, 8, 1464-1471.	3.6	39
33	Metal–organic framework immobilized cobalt oxide nanoparticles for efficient photocatalytic water oxidation. Journal of Materials Chemistry A, 2015, 3, 20607-20613.	5.2	57
34	Bio-inspired organic cobalt(<scp>ii</scp>) phosphonates toward water oxidation. Energy and Environmental Science, 2015, 8, 526-534.	15.6	79
35	Photocatalytic Reduction of Carbon Dioxide over Selfâ€Assembled Carbon Nitride and Layered Double Hydroxide: The Role of Carbon Dioxide Enrichment. ChemCatChem, 2014, 6, 2315-2321.	1.8	130
36	Aggregation morphologies of a series of heterogemini surfactants with a hydroxyl head group in aqueous solution. Soft Matter, 2014, 10, 9177-9186.	1.2	33

TIAN-HUA ZHOU

#	Article	IF	CITATIONS
37	Porous carbon nitride nanosheets for enhanced photocatalytic activities. Nanoscale, 2014, 6, 14984-14990.	2.8	109
38	Post-synthesis modification of a metal–organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy and Environmental Science, 2013, 6, 3229.	15.6	336
39	Ligand Geometry Directed Polar Cobalt(II) Phosphonate Displaying Weak Ferromagnetism. Crystal Growth and Design, 2013, 13, 838-843.	1.4	22
40	Solvothermal syntheses of three new one-dimensional ternary selenidostannates: [DBNH][M1/2Sn1/2Se2] (M=Mn, Zn, Hg). Journal of Solid State Chemistry, 2013, 204, 86-90.	1.4	15
41	Kinetically Controlling Phase Transformations of Crystalline Mercury Selenidostannates through Surfactant Media. Inorganic Chemistry, 2013, 52, 4148-4150.	1.9	121
42	Syntheses, crystal structures and SHG properties of a series of polar alkali-metal molybdenum(vi) selenites based on strandberg-type [Mo5O15(SeO3)2]4â^' polyanion. Dalton Transactions, 2012, 41, 5687.	1.6	24
43	Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light. RSC Advances, 2012, 2, 8293.	1.7	38
44	Syntheses, crystal structures and luminescent properties of new lanthanide(<scp>iii</scp>) organoarsonates. Dalton Transactions, 2012, 41, 1229-1236.	1.6	14
45	A ligand-conformation driving chiral generation and symmetry-breaking crystallization of a zinc(ii) organoarsonate. Chemical Communications, 2011, 47, 8862.	2.2	44
46	Towards rational design of zinc(<scp>ii</scp>) and cadmium(<scp>ii</scp>) sulfonate-arsonates with low dimensional aggregations. CrystEngComm, 2011, 13, 1480-1489.	1.3	12
47	Novel lead(II) coordination polymers based on p-sulfophenylarsonic acid. Journal of Molecular Structure, 2011, 987, 51-57.	1.8	14
48	Novel copper(II) sulfonate–arsonates with discrete cluster, 1D chain and layered structures. Journal of Molecular Structure, 2010, 984, 416-423.	1.8	16
49	Synthesis, Crystal Structures, and Luminescent Properties of Two Series' of New Lanthanide (III) Amino-Carboxylate-Phosphonates. Inorganic Chemistry, 2010, 49, 905-915.	1.9	70
50	A Series of New Manganese(II) Sulfonate-Arsonates with 2D Layer, 1D Chain, and 0D Clusters Structures. Inorganic Chemistry, 2010, 49, 3489-3500.	1.9	27
51	A Series of Novel Lanthanide(III) Trisulfonates Based on Dinuclear Clusters. Crystal Growth and Design, 2010, 10, 1788-1797.	1.4	36
52	Effect of the Interionic Distance on the Interfacial Behavior of Double-Chain Zwitterionic Amphiphiles. Journal of Dispersion Science and Technology, 2009, 30, 1135-1141.	1.3	3
53	Synthesis and thermotropic liquid crystalline properties of heterogemini surfactants containing a quaternary ammonium and a hydroxyl group. Journal of Colloid and Interface Science, 2009, 331, 476-483.	5.0	33
54	Synthesis and thermotropic liquid crystalline properties of zwitterionic gemini surfactants containing a quaternary ammonium and a sulfate group. Journal of Colloid and Interface Science, 2009, 338, 156-162.	5.0	26

#	Article	IF	CITATIONS
55	Thermotropic Liquid Crystals of Double-Chain Zwit-terionic Surfactants (C16)2NCnS. Acta Physico-chimica Sinica, 2008, 24, 1347-1352.	0.6	3