
Thomas Strecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Proteomic landscape of SARS-CoV-2– and MERS-CoV–infected primary human renal epithelial cells. Life Science Alliance, 2022, 5, e202201371.	1.3	5
2	Complement-Mediated Neutralisation Identified in Ebola Virus Disease Survivor Plasma: Implications for Protection and Pathogenesis. Frontiers in Immunology, 2022, 13, 857481.	2.2	9
3	Longitudinal antibody and T cell responses in Ebola virus disease survivors and contacts: an observational cohort study. Lancet Infectious Diseases, The, 2021, 21, 507-516.	4.6	26
4	CP100356 Hydrochloride, a P-Glycoprotein Inhibitor, Inhibits Lassa Virus Entry: Implication of a Candidate Pan-Mammarenavirus Entry Inhibitor. Viruses, 2021, 13, 1763.	1.5	2
5	Randomized, Blinded, Dose-Ranging Trial of an Ebola Virus Glycoprotein Nanoparticle Vaccine With Matrix-M Adjuvant in Healthy Adults. Journal of Infectious Diseases, 2020, 222, 572-582.	1.9	38
6	Serological evidence of exposure to ebolaviruses in domestic pigs from Guinea. Transboundary and Emerging Diseases, 2020, 67, 724-732.	1.3	9
7	Postexposure Prophylaxis With rVSV-ZEBOV Following Exposure to a Patient With Ebola Virus Disease Relapse in the United Kingdom: An Operational, Safety, and Immunogenicity Report. Clinical Infectious Diseases, 2020, 71, 2872-2879.	2.9	17
8	Polymer microarrays rapidly identify competitive adsorbents of virus-like particles. Biointerphases, 2020, 15, 061005.	0.6	5
9	Adjuvant formulated virus-like particles expressing native-like forms of the Lassa virus envelope surface glycoprotein are immunogenic and induce antibodies with broadly neutralizing activity. Npj Vaccines, 2020, 5, 71.	2.9	21
10	Distinct Molecular Mechanisms of Host Immune Response Modulation by Arenavirus NP and Z Proteins. Viruses, 2020, 12, 784.	1.5	8
11	Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Scientific Reports, 2020, 10, 14289.	1.6	12
12	Humoral and cellular immune response induced by rVSVΔG-ZEBOV-GP vaccine among frontline workers during the 2013–2016 West Africa Ebola outbreak in Guinea. Vaccine, 2020, 38, 4877-4884.	1.7	14
13	Ebola Virus Neutralizing Antibodies in Dogs from Sierra Leone, 2017. Emerging Infectious Diseases, 2020, 26, 760-763.	2.0	1
14	Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa. Biology, 2020, 9, 26.	1.3	8
15	Early transmission and case fatality of Ebola virus at the index site of the 2013–16 west African Ebola outbreak: a cross-sectional seroprevalence survey. Lancet Infectious Diseases, The, 2019, 19, 429-438.	4.6	19
16	Detectable Vesicular Stomatitis Virus (VSV)–Specific Humoral and Cellular Immune Responses Following VSV–Ebola Virus Vaccination in Humans. Journal of Infectious Diseases, 2019, 219, 556-561.	1.9	29
17	Serological Evidence for the Circulation of Ebolaviruses in Pigs From Sierra Leone. Journal of Infectious Diseases, 2018, 218, S305-S311.	1.9	20
18	Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7320-7325.	3.3	95

THOMAS STRECKER

#	Article	IF	CITATIONS
19	Determining the effect of different environmental conditions on Ebola virus viability in clinically relevant specimens. Emerging Microbes and Infections, 2018, 7, 1-7.	3.0	3
20	New Lineage of Lassa Virus, Togo, 2016. Emerging Infectious Diseases, 2018, 24, 599-602.	2.0	79
21	Comprehensive characterization of cellular immune responses following Ebola virus infection. Journal of Infectious Diseases, 2017, 215, jiw508.	1.9	38
22	Dose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV Immunization. EBioMedicine, 2017, 19, 107-118.	2.7	64
23	IRF9 Prevents CD8 ⁺ T Cell Exhaustion in an Extrinsic Manner during Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Virology, 2017, 91, .	1.5	30
24	Favipiravir and Ribavirin Treatment of Epidemiologically Linked Cases of Lassa Fever. Clinical Infectious Diseases, 2017, 65, 855-859.	2.9	101
25	Safety and immunogenicity of rVSVΔG-ZEBOV-GP Ebola vaccine in adults and children in Lambaréné, Gabon: A phase I randomised trial. PLoS Medicine, 2017, 14, e1002402.	3.9	57
26	Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors. Journal of General Virology, 2017, 98, 2447-2453.	1.3	7
27	Genome Sequence of Lassa Virus Isolated from the First Domestically Acquired Case in Germany. Genome Announcements, 2016, 4, .	0.8	15
28	Spatial and temporal evolution of Lassa virus in the natural host population in Upper Guinea. Scientific Reports, 2016, 6, 21977.	1.6	28
29	Unique human immune signature of Ebola virus disease in Guinea. Nature, 2016, 533, 100-104.	13.7	170
30	Analysis of Diagnostic Findings From the European Mobile Laboratory in Guéckédou, Guinea, March 2014 Through March 2015. Journal of Infectious Diseases, 2016, 214, S250-S257.	1.9	32
31	A Monovalent Chimpanzee Adenovirus Ebola Vaccine Boosted with MVA. New England Journal of Medicine, 2016, 374, 1635-1646.	13.9	295
32	Development of a Cost-effective Ovine Polyclonal Antibody-Based Product, EBOTAb, to Treat Ebola Virus Infection. Journal of Infectious Diseases, 2016, 213, 1124-1133.	1.9	24
33	Effect of Artesunate–Amodiaquine on Mortality Related to Ebola Virus Disease. New England Journal of Medicine, 2016, 374, 23-32.	13.9	111
34	Phase 1 Trials of rVSV Ebola Vaccine in Africa and Europe. New England Journal of Medicine, 2016, 374, 1647-1660.	13.9	355
35	The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. Journal of General Virology, 2016, 97, 855-866.	1.3	12
36	Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathogens, 2016, 12, e1005418.	2.1	105

THOMAS STRECKER

#	Article	IF	CITATIONS
37	Temporal and spatial analysis of the 2014–2015 Ebola virus outbreak in West Africa. Nature, 2015, 524, 97-101.	13.7	272
38	Field Evaluation of Capillary Blood Samples as a Collection Specimen for the Rapid Diagnosis of Ebola Virus Infection During an Outbreak Emergency. Clinical Infectious Diseases, 2015, 61, 669-675.	2.9	28
39	Interaction with Tsg101 Is Necessary for the Efficient Transport and Release of Nucleocapsids in Marburg Virus-Infected Cells. PLoS Pathogens, 2014, 10, e1004463.	2.1	46
40	Evidence for a decrease in transmission of Ebola virus–Lofa County, Liberia, June 8-November 1, 2014. Morbidity and Mortality Weekly Report, 2014, 63, 1067-71.	9.0	20
41	The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z. Cellular Microbiology, 2013, 15, 315-334.	1.1	12
42	Synthetic Generation of Influenza Vaccine Viruses for Rapid Response to Pandemics. Science Translational Medicine, 2013, 5, 185ra68.	5.8	164
43	Multifunctional Nature of the Arenavirus RING Finger Protein Z. Viruses, 2012, 4, 2973-3011.	1.5	58
44	Exploring synergies between academia and vaccine manufacturers: a pilot study on how to rapidly produce vaccines to combat emerging pathogens. Clinical Chemistry and Laboratory Medicine, 2012, 50, 1275-1279.	1.4	3
45	Sangassou Virus, the First Hantavirus Isolate from Africa, Displays Genetic and Functional Properties Distinct from Those of Other Murinae-Associated Hantaviruses. Journal of Virology, 2012, 86, 3819-3827.	1.5	44
46	Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cytoplasmic tail. FEBS Letters, 2010, 584, 4379-4382.	1.3	19
47	Viral Protein Determinants of Lassa Virus Entry and Release from Polarized Epithelial Cells. Journal of Virology, 2010, 84, 3178-3188.	1.5	56
48	Characterization of Lassa Virus Glycoprotein Oligomerization and Influence of Cholesterol on Virus Replication. Journal of Virology, 2010, 84, 983-992.	1.5	41
49	Efficient Budding of the Tacaribe Virus Matrix Protein Z Requires the Nucleoprotein. Journal of Virology, 2010, 84, 3603-3611.	1.5	59
50	Inhibition of Lassa Virus Glycoprotein Cleavage and Multicycle Replication by Site 1 Protease-Adapted α1-Antitrypsin Variants. PLoS Neglected Tropical Diseases, 2009, 3, e446.	1.3	29
51	Vacuolar Protein Sorting Pathway Contributes to the Release of Marburg Virus. Journal of Virology, 2009, 83, 2327-2337.	1.5	39
52	Role of the Transmembrane Domain of Marburg Virus Surface Protein GP in Assembly of the Viral Envelope. Journal of Virology, 2007, 81, 3942-3948.	1.5	37
53	The role of myristoylation in the membrane association of the Lassa virus matrix protein Z. Virology Journal, 2006, 3, 93.	1.4	78
54	The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virology Journal, 2006, 3, 41.	1.4	64

THOMAS STRECKER

#	Article	IF	CITATIONS
55	Lassa Virus Glycoprotein Signal Peptide Displays a Novel Topology with an Extended Endoplasmic Reticulum Luminal Region. Journal of Biological Chemistry, 2004, 279, 12293-12299.	1.6	30
56	Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology, 2004, 321, 134-143.	1.1	60
57	Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Research, 2004, 100, 249-255.	1.1	90
58	Identification of Lassa virus glycoprotein signal peptide as a trans â€acting maturation factor. EMBO Reports, 2003, 4, 1084-1088.	2.0	136
59	Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Letters, 2003, 538, 203-206.	1.3	97
60	Lassa Virus Z Protein Is a Matrix Protein Sufficient for the Release of Virus-Like Particles. Journal of Virology, 2003, 77, 10700-10705.	1.5	211
61	Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Reports, 2003, 4, 1084-1088.	2.0	92