Tewes Tralau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155583/publications.pdf

Version: 2024-02-01

318942 263392 2,122 52 23 45 citations h-index g-index papers 52 52 52 3618 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	An approach for mixture testing and prioritization based on common kinetic groups. Archives of Toxicology, 2022, 96, 1661-1671.	1.9	8
2	Reply to the opinion paper "The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard assessment―by Scholz et al Archives of Toxicology, 2022, 96, 2387-2390.	1.9	3
3	A scientific review of colorful textiles. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2021, 16, 5-17.	0.5	10
4	The "EU chemicals strategy for sustainability―questions regulatory toxicology as we know it: is it all rooted in sound scientific evidence?. Archives of Toxicology, 2021, 95, 2589-2601.	1.9	24
5	A prospective whole-mixture approach to assess risk of the food and chemical exposome. Nature Food, 2021, 2, 463-468.	6.2	19
6	Effects of co-formulants on the absorption and secretion of active substances in plant protection products in vitro. Archives of Toxicology, 2021, 95, 3205-3221.	1.9	11
7	Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo (<i>a</i>) Pyrene Metabolite Profile and Its Distribution in 3D Skin. MBio, 2021, 12, e0122321.	1.8	3
8	Microbially competent 3D skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Archives of Toxicology, 2020, 94, 3487-3502.	1.9	12
9	Substance classification of titanium dioxide illustrates limitations of EU legislation. Nature Food, 2020, 1, 523-525.	6.2	9
10	Characterization of Quinoline Yellow Dyes As Transient Aryl Hydrocarbon Receptor Agonists. Chemical Research in Toxicology, 2020, 33, 742-750.	1.7	10
11	Aggregated aluminium exposure: risk assessment for the general population. Archives of Toxicology, 2019, 93, 3503-3521.	1.9	82
12	Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 219-229.	1.5	52
13	Skin toxicology and 3Rsâ€"Current challenges for public health protection. Experimental Dermatology, 2018, 27, 526-536.	1.4	19
14	Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin. Archives of Toxicology, 2017, 91, 2331-2341.	1.9	29
15	A Novel Dual-Color Luciferase Reporter Assay for Simultaneous Detection of Estrogen and Aryl Hydrocarbon Receptor Activation. Chemical Research in Toxicology, 2017, 30, 1436-1447.	1.7	12
16	The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook. Regulatory Toxicology and Pharmacology, 2017, 91, S14-S26.	1.3	92
17	Applying 'omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regulatory Toxicology and Pharmacology, 2017, 91, S3-S13.	1.3	102
18	Framework for the quantitative weight-of-evidence analysis of â€~omics data for regulatory purposes. Regulatory Toxicology and Pharmacology, 2017, 91, S46-S60.	1.3	23

#	Article	IF	CITATIONS
19	Framework for the quality assurance of 'omics technologies considering GLP requirements. Regulatory Toxicology and Pharmacology, 2017, 91, S27-S35.	1.3	32
20	Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicology Research, 2017, 6, 595-610.	0.9	13
21	The human microbiome, from Achilles armour to Nessus' shirt. Archives of Toxicology, 2017, 91, 2699-2701.	1.9	3
22	Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 833-841.	1.5	23
23	Combination of Metabolomics with Cellular Assays Reveals New Biomarkers and Mechanistic Insights on Xenoestrogenic Exposures in MCF-7 Cells. Chemical Research in Toxicology, 2017, 30, 883-892.	1.7	22
24	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	0.9	214
25	Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks. PLoS ONE, 2016, 11, e0147239.	1.1	29
26	The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling. Scientific Reports, 2016, 6, 32009.	1.6	19
27	G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells. Archives of Toxicology, 2016, 90, 1939-1948.	1.9	14
28	A medical-toxicological view of tattooing. Lancet, The, 2016, 387, 395-402.	6.3	177
29	Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 411-425.	1.5	47
30	Moving from rats to cellular omics in regulatory toxicology: great challenge toward sustainability or "up-shit-creek without a paddle�. Archives of Toxicology, 2015, 89, 819-821.	1.9	13
31	Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Archives of Toxicology, 2015, 89, 823-850.	1.9	51
32	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	0.9	108
33	Degradation of benzo[<i>a</i>]pyrene by bacterial isolates from human skin. FEMS Microbiology Ecology, 2014, 88, 129-139.	1.3	62
34	The evolution of our understanding of endo-xenobiotic crosstalk and cytochrome P450 regulation and the therapeutic implications. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1541-1554.	1.5	18
35	Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells. Toxicology in Vitro, 2013, 27, 1467-1475.	1.1	47
36	Wind of Change Challenges Toxicological Regulators. Environmental Health Perspectives, 2012, 120, 1489-1494.	2.8	28

#	Article	IF	Citations
37	"Drugs on oxygen― an update and perspective on the role of cytochrome P450 testing in pharmacology. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 1357-1362.	1.5	5
38	Risk assessment of nanomaterials in cosmetics: a European union perspective. Archives of Toxicology, 2012, 86, 1641-1646.	1.9	32
39	Drug-mediated toxicity: illuminating the †bad' in the test tube by means of cellular assays?. Trends in Pharmacological Sciences, 2012, 33, 353-364.	4.0	18
40	Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Cellular and Molecular Life Sciences, 2012, 69, 763-781.	2.4	286
41	Why two are not enough: degradation of p-toluenesulfonate by a bacterial community from a pristine site in Moorea, French Polynesia. FEMS Microbiology Letters, 2011, 316, 123-129.	0.7	6
42	Chemical toxicity testing in vitro using cytochrome P450–expressing cell lines, such as human CYP1B1. Nature Protocols, 2011, 6, 677-688.	5.5	10
43	Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays?. Archives of Toxicology, 2011, 85, 1361-1372.	1.9	27
44	Structural studies on the fullâ€length LysRâ€∢i>type⟨/i> regulator TsaR from ⟨i>Comamonas testosteroni⟨/i> Tâ€2 reveal a novel open conformation of the tetrameric LTTR fold. Molecular Microbiology, 2010, 75, 1199-1214.	1.2	72
45	An Internal Reaction Chamber in Dimethylglycine Oxidase Provides Efficient Protection from Exposure to Toxic Formaldehyde. Journal of Biological Chemistry, 2009, 284, 17826-17834.	1.6	22
46	High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR fromComamonas testosteroniT-2 and data-set analysis for a MIRAS structure-solution approach. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 764-769.	0.7	1
47	Transcriptomic Analysis of the Sulfate Starvation Response of <i>Pseudomonas aeruginosa </i> Journal of Bacteriology, 2007, 189, 6743-6750.	1.0	84
48	Circadian rhythmicity during prolonged chemostat cultivation of Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 754-763.	0.9	8
49	A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in Comamonas testosteroni T-2. Biochemical Journal, 2004, 383, 91-99.	1.7	24
50	An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p -toluenesulfonate in Comamonas testosteroni T-2. Archives of Microbiology, 2003, 180, 319-326.	1.0	16
51	Characterization of TsaR, an Oxygen-Sensitive LysR-Type Regulator for the Degradation of p -Toluenesulfonate in Comamonas testosteroni T-2. Applied and Environmental Microbiology, 2003, 69, 2298-2305.	1.4	19
52	Map of the IncP1Î ² Plasmid pTSA Encoding the Widespread Genes (tsa) for p-Toluenesulfonate Degradation in Comamonas testosteroni T-2. Applied and Environmental Microbiology, 2001, 67, 1508-1516.	1.4	52