Tewes Tralau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155583/publications.pdf

Version: 2024-02-01

233421 279798 2,122 52 23 45 citations h-index g-index papers 52 52 52 3356 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Allergic contact dermatitis: epidemiology, molecular mechanisms, in vitro methods and regulatory aspects. Cellular and Molecular Life Sciences, 2012, 69, 763-781.	5.4	286
2	Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX: Alternatives To Animal Experimentation, 2016, 33, 272-321.	1.5	214
3	A medical-toxicological view of tattooing. Lancet, The, 2016, 387, 395-402.	13.7	177
4	Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives To Animal Experimentation, 2015, 32, 327-378.	1.5	108
5	Applying 'omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regulatory Toxicology and Pharmacology, 2017, 91, S3-S13.	2.7	102
6	The challenge of the application of 'omics technologies in chemicals risk assessment: Background and outlook. Regulatory Toxicology and Pharmacology, 2017, 91, S14-S26.	2.7	92
7	Transcriptomic Analysis of the Sulfate Starvation Response of <i>Pseudomonas aeruginosa </i> Journal of Bacteriology, 2007, 189, 6743-6750.	2.2	84
8	Aggregated aluminium exposure: risk assessment for the general population. Archives of Toxicology, 2019, 93, 3503-3521.	4.2	82
9	Structural studies on the fullâ€length LysRâ€ <i>type</i> regulator TsaR from <i>Comamonas testosteroni</i> Tâ€2 reveal a novel open conformation of the tetrameric LTTR fold. Molecular Microbiology, 2010, 75, 1199-1214.	2.5	72
10	Degradation of benzo[<i>a</i>)pyrene by bacterial isolates from human skin. FEMS Microbiology Ecology, 2014, 88, 129-139.	2.7	62
11	Map of the IncP1 \hat{I}^2 Plasmid pTSA Encoding the Widespread Genes (<i>tsa</i>) for <i>p-</i> Toluenesulfonate Degradation in <i>Comamonas testosteroni</i> T-2. Applied and Environmental Microbiology, 2001, 67, 1508-1516.	3.1	52
12	Chemical activation of estrogen and aryl hydrocarbon receptor signaling pathways and their interaction in toxicology and metabolism. Expert Opinion on Drug Metabolism and Toxicology, 2019, 15, 219-229.	3.3	52
13	Regulatory toxicology in the twenty-first century: challenges, perspectives and possible solutions. Archives of Toxicology, 2015, 89, 823-850.	4.2	51
14	Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells. Toxicology in Vitro, 2013, 27, 1467-1475.	2.4	47
15	Insights on the human microbiome and its xenobiotic metabolism: what is known about its effects on human physiology?. Expert Opinion on Drug Metabolism and Toxicology, 2015, 11, 411-425.	3.3	47
16	Risk assessment of nanomaterials in cosmetics: a European union perspective. Archives of Toxicology, 2012, 86, 1641-1646.	4.2	32
17	Framework for the quality assurance of 'omics technologies considering GLP requirements. Regulatory Toxicology and Pharmacology, 2017, 91, S27-S35.	2.7	32
18	Estrogenic Activity of Mineral Oil Aromatic Hydrocarbons Used in Printing Inks. PLoS ONE, 2016, 11, e0147239.	2.5	29

#	Article	IF	CITATIONS
19	Toxification of polycyclic aromatic hydrocarbons by commensal bacteria from human skin. Archives of Toxicology, 2017, 91, 2331-2341.	4.2	29
20	Wind of Change Challenges Toxicological Regulators. Environmental Health Perspectives, 2012, 120, 1489-1494.	6.0	28
21	Developmental toxicity testing in the 21st century: the sword of Damocles shattered by embryonic stem cell assays?. Archives of Toxicology, 2011, 85, 1361-1372.	4.2	27
22	A novel outer-membrane anion channel (porin) as part of a putatively two-component transport system for 4-toluenesulphonate in <i>Comamonas testosteroni</i> T-2. Biochemical Journal, 2004, 383, 91-99.	3.7	24
23	The "EU chemicals strategy for sustainability―questions regulatory toxicology as we know it: is it all rooted in sound scientific evidence?. Archives of Toxicology, 2021, 95, 2589-2601.	4.2	24
24	Framework for the quantitative weight-of-evidence analysis of â€~omics data for regulatory purposes. Regulatory Toxicology and Pharmacology, 2017, 91, S46-S60.	2.7	23
25	Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 833-841.	3.3	23
26	An Internal Reaction Chamber in Dimethylglycine Oxidase Provides Efficient Protection from Exposure to Toxic Formaldehyde. Journal of Biological Chemistry, 2009, 284, 17826-17834.	3.4	22
27	Combination of Metabolomics with Cellular Assays Reveals New Biomarkers and Mechanistic Insights on Xenoestrogenic Exposures in MCF-7 Cells. Chemical Research in Toxicology, 2017, 30, 883-892.	3.3	22
28	Characterization of TsaR, an Oxygen-Sensitive LysR-Type Regulator for the Degradation of p -Toluenesulfonate in Comamonas testosteroni T-2. Applied and Environmental Microbiology, 2003, 69, 2298-2305.	3.1	19
29	The Q-rich/PST domain of the AHR regulates both ligand-induced nuclear transport and nucleocytoplasmic shuttling. Scientific Reports, 2016, 6, 32009.	3.3	19
30	Skin toxicology and 3Rsâ€"Current challenges for public health protection. Experimental Dermatology, 2018, 27, 526-536.	2.9	19
31	A prospective whole-mixture approach to assess risk of the food and chemical exposome. Nature Food, 2021, 2, 463-468.	14.0	19
32	Drug-mediated toxicity: illuminating the †bad' in the test tube by means of cellular assays?. Trends in Pharmacological Sciences, 2012, 33, 353-364.	8.7	18
33	The evolution of our understanding of endo-xenobiotic crosstalk and cytochrome P450 regulation and the therapeutic implications. Expert Opinion on Drug Metabolism and Toxicology, 2013, 9, 1541-1554.	3.3	18
34	An additional regulator, TsaQ, is involved with TsaR in regulation of transport during the degradation of p -toluenesulfonate in Comamonas testosteroni T-2. Archives of Microbiology, 2003, 180, 319-326.	2.2	16
35	G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells. Archives of Toxicology, 2016, 90, 1939-1948.	4.2	14
36	Moving from rats to cellular omics in regulatory toxicology: great challenge toward sustainability or "up-shit-creek without a paddle�. Archives of Toxicology, 2015, 89, 819-821.	4.2	13

#	Article	IF	CITATIONS
37	Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicology Research, 2017, 6, 595-610.	2.1	13
38	A Novel Dual-Color Luciferase Reporter Assay for Simultaneous Detection of Estrogen and Aryl Hydrocarbon Receptor Activation. Chemical Research in Toxicology, 2017, 30, 1436-1447.	3.3	12
39	Microbially competent 3D skin: a test system that reveals insight into host–microbe interactions and their potential toxicological impact. Archives of Toxicology, 2020, 94, 3487-3502.	4.2	12
40	Effects of co-formulants on the absorption and secretion of active substances in plant protection products in vitro. Archives of Toxicology, 2021, 95, 3205-3221.	4.2	11
41	Chemical toxicity testing in vitro using cytochrome P450–expressing cell lines, such as human CYP1B1. Nature Protocols, 2011, 6, 677-688.	12.0	10
42	Characterization of Quinoline Yellow Dyes As Transient Aryl Hydrocarbon Receptor Agonists. Chemical Research in Toxicology, 2020, 33, 742-750.	3.3	10
43	A scientific review of colorful textiles. Journal Fur Verbraucherschutz Und Lebensmittelsicherheit, 2021, 16, 5-17.	1.4	10
44	Substance classification of titanium dioxide illustrates limitations of EU legislation. Nature Food, 2020, 1, 523-525.	14.0	9
45	Circadian rhythmicity during prolonged chemostat cultivation of Neurospora crassa. Fungal Genetics and Biology, 2007, 44, 754-763.	2.1	8
46	An approach for mixture testing and prioritization based on common kinetic groups. Archives of Toxicology, 2022, 96, 1661-1671.	4.2	8
47	Why two are not enough: degradation of p-toluenesulfonate by a bacterial community from a pristine site in Moorea, French Polynesia. FEMS Microbiology Letters, 2011, 316, 123-129.	1.8	6
48	"Drugs on oxygen― an update and perspective on the role of cytochrome P450 testing in pharmacology. Expert Opinion on Drug Metabolism and Toxicology, 2012, 8, 1357-1362.	3.3	5
49	The human microbiome, from Achilles armour to Nessus' shirt. Archives of Toxicology, 2017, 91, 2699-2701.	4.2	3
50	Commensal-Related Changes in the Epidermal Barrier Function Lead to Alterations in the Benzo (<i>a</i>) Pyrene Metabolite Profile and Its Distribution in 3D Skin. MBio, 2021, 12, e0122321.	4.1	3
51	Reply to the opinion paper "The EU chemicals strategy for sustainability: an opportunity to develop new approaches for hazard assessment―by Scholz et al Archives of Toxicology, 2022, 96, 2387-2390.	4.2	3
52	High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR fromComamonas testosteroniT-2 and data-set analysis for a MIRAS structure-solution approach. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 764-769.	0.7	1