Ryan M Pearson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sandwiched Grapheneâ^'Membrane Superstructures. ACS Nano, 2010, 4, 229-234.	14.6	252
2	Biomolecular corona on nanoparticles: a survey of recent literature and its implications in targeted drug delivery. Frontiers in Chemistry, 2014, 2, 108.	3.6	108
3	In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Advanced Drug Delivery Reviews, 2017, 114, 240-255.	13.7	95
4	Size and Surface Charge of Engineered Poly(amidoamine) Dendrimers Modulate Tumor Accumulation and Penetration: A Model Study Using Multicellular Tumor Spheroids. Molecular Pharmaceutics, 2016, 13, 2155-2163.	4.6	89
5	An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 191-200.	3.3	89
6	Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology, 2020, 158, 1667-1681.e12.	1.3	87
7	Controlled Delivery of Single or Multiple Antigens in Tolerogenic Nanoparticles Using Peptide-Polymer Bioconjugates. Molecular Therapy, 2017, 25, 1655-1664.	8.2	79
8	Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5059-5064.	7.1	78
9	Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. Journal of Controlled Release, 2019, 300, 185-196.	9.9	68
10	Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 282-291.	3.3	67
11	Conjugation of Transforming Growth Factor Beta to Antigen-Loaded Poly(lactide- <i>co</i> -glycolide) Nanoparticles Enhances Efficiency of Antigen-Specific Tolerance. Bioconjugate Chemistry, 2018, 29, 813-823.	3.6	66
12	Direct Measurements on CD24-Mediated Rolling of Human Breast Cancer MCF-7 Cells on E-Selectin. Analytical Chemistry, 2011, 83, 1078-1083.	6.5	53
13	Cargo-less nanoparticles program innate immune cell responses to toll-like receptor activation. Biomaterials, 2019, 218, 119333.	11.4	51
14	Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bulletin, 2014, 39, 227-237.	3.5	50
15	Dendron-mediated self-assembly of highly PEGylated block copolymers: a modular nanocarrier platform. Chemical Communications, 2011, 47, 10302.	4.1	49
16	Dendronâ€Based Micelles for Topical Delivery of Endoxifen: A Potential Chemoâ€Preventive Medicine for Breast Cancer. Advanced Functional Materials, 2014, 24, 2442-2449.	14.9	49
17	Temporal Control over Cellular Targeting through Hybridization of Folate-targeted Dendrimers and PEG-PLA Nanoparticles. Biomacromolecules, 2012, 13, 1223-1230.	5.4	47
18	Dendritic nanoparticles: the next generation of nanocarriers?. Therapeutic Delivery, 2012, 3, 941-959.	2.2	46

Ryan M Pearson

#	Article	IF	CITATIONS
19	Tuning the Selectivity of Dendron Micelles Through Variations of the Poly(ethylene glycol) Corona. ACS Nano, 2016, 10, 6905-6914.	14.6	43
20	Kinetically Controlled Cellular Interactions of Polymerâ´'Polymer and Polymerâ´'Liposome Nanohybrid Systems. Bioconjugate Chemistry, 2011, 22, 466-474.	3.6	38
21	Poly(ethylene glycol) Corona Chain Length Controls End-Group-Dependent Cell Interactions of Dendron Micelles. Macromolecules, 2014, 47, 6911-6918.	4.8	32
22	Localized immune tolerance from FasL-functionalized PLG scaffolds. Biomaterials, 2019, 192, 271-281.	11.4	30
23	Positively Charged Dendron Micelles Display Negligible Cellular Interactions. ACS Macro Letters, 2013, 2, 77-81.	4.8	29
24	Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials, 2022, 283, 121457.	11.4	21
25	Immunomodulatory Nanoparticles Mitigate Macrophage Inflammation via Inhibition of PAMP Interactions and Lactate-Mediated Functional Reprogramming of NF-ήB and p38 MAPK. Pharmaceutics, 2021, 13, 1841.	4.5	20
26	Biomaterial-Driven Immunomodulation: Cell Biology-Based Strategies to Mitigate Severe Inflammation and Sepsis. Frontiers in Immunology, 2020, 11, 1726.	4.8	18
27	Nanoparticle-Based Delivery to Treat Spinal Cord Injury—a Mini-review. AAPS PharmSciTech, 2021, 22, 101.	3.3	16
28	Microfluidic-Generated Immunomodulatory Nanoparticles and Formulation-Dependent Effects on Lipopolysaccharide-Induced Macrophage Inflammation. AAPS Journal, 2022, 24, 6.	4.4	10
29	Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation. Pharmaceutical Development and Technology, 2022, 27, 389-398.	2.4	5
30	Serum-Independent Nonviral Gene Delivery to Innate and Adaptive Immune Cells Using Immunoplexes. ACS Applied Bio Materials, 2020, 3, 6263-6272.	4.6	4
31	Nanoparticle Personalized Biomolecular Corona: Implications of Pre-existing Conditions on Immunomodulation and Cancer. Biomaterials Science, 2022, 10, 2540-2549.	5.4	3
32	Facilitated self-assembly of novel dendron-based copolymers. , 2011, 2011, 8334-6.		0
33	BIOINSPIRED ENGINEERING OF MULTIFUNCTIONAL DEVICES. World Scientific Series in Nanoscience and Nanotechnology, 2014, , 31-63.	0.1	0
34	Drug Delivery: Dendron-Based Micelles for Topical Delivery of Endoxifen: A Potential Chemo-Preventive Medicine for Breast Cancer (Adv. Funct. Mater. 17/2014). Advanced Functional Materials, 2014, 24, 2441-2441.	14.9	0
35	Abstract 1954: Synthesis and self-assembly of highly PEGylated dendron-coils: A potential nanocarrier platform. , 2012, , .		0
36	MULTIFUNCTIONAL DENDRITIC NANOPARTICLES AS A NANOMEDICINE PLATFORM. Frontiers in Nanobiomedical Research, 2018, , 155-186.	0.1	0