List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultra-high temperature flexure and strain driven amorphization in polycrystalline boron carbide bulks. Scripta Materialia, 2022, 210, 114487.	2.6	3
2	Most Frequently Asked Questions about the Coercivity of Nd-Fe-B Permanent Magnets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, S38-S51.	0.1	1
3	Recent Advances in SmFe ₁₂ -based Permanent Magnets. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2022, 69, S74-S83.	0.1	Ο
4	Effect of microstructure on the electrical conductivity of p-type Fe–Al–Si thermoelectric materials. Journal of Alloys and Compounds, 2022, 903, 163835.	2.8	5
5	Coercivity engineering in Sm(Fe0.8Co0.2)12B0.5 thin films by Si grain boundary diffusion. Acta Materialia, 2022, 227, 117716.	3.8	15
6	Transmission electron microscopy image based micromagnetic simulations for optimizing nanostructure of FePt-X heat-assisted magnetic recording media. Acta Materialia, 2022, 227, 117744.	3.8	16
7	(Nd,La,Ce)-Fe-B hot-deformed magnets for application of variable-magnetic-force motors. Acta Materialia, 2022, 228, 117747.	3.8	10
8	Development of Co-lean (Sm,Y)(Fe,Co,Ti) ₁₂ compounds with large saturation magnetization. Applied Physics Express, 2022, 15, 045505.	1.1	4
9	Magnetic refrigeration material operating at a full temperature range required for hydrogen liquefaction. Nature Communications, 2022, 13, 1817.	5.8	64
10	Peculiar behavior of V on the Curie temperature and anisotropy field of SmFe12-xVx compounds. Acta Materialia, 2022, 232, 117928.	3.8	10
11	Magnetization Reversals of Nd-Fe-B-Based Magnets with Different Microstructural Features. Jom, 2022, 74, 2328-2337.	0.9	1
12	Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications. Acta Materialia, 2022, 232, 117942.	3.8	14
13	Machine Learning Approach for Evaluation of Nanodefects and Magnetic Anisotropy in FePt Granular Films. Scripta Materialia, 2022, 218, 114797.	2.6	3
14	Identifying the mechanism of hard magnet coercivity by its angular dependence. Physical Review B, 2022, 105, .	1.1	4
15	Intrinsic magnetic properties of (Sm,Gd)Fe12-based compounds with minimized addition of Ti. Journal of Alloys and Compounds, 2021, 855, 157491.	2.8	19
16	Improved coercivity and squareness in bulk hot-deformed Nd–Fe–B magnets by two-step eutectic grain boundary diffusion process. Acta Materialia, 2021, 203, 116479.	3.8	51
17	SmFe12-based hard magnetic alloys prepared by reduction-diffusion process. Journal of Alloys and Compounds, 2021, 861, 157993.	2.8	13
18	(Pr0.75Ce0.25)-Fe-B hot-deformed magnets for cryogenic applications. Scripta Materialia, 2021, 194, 113648.	2.6	9

#	Article	IF	CITATIONS
19	Strain-induced cooling-heating switching of anisotropic magneto-Peltier effect. Applied Physics Letters, 2021, 118, .	1.5	6
20	Prospects for the development of SmFe12-based permanent magnets with a ThMn12-type phase. Scripta Materialia, 2021, 194, 113686.	2.6	37
21	Analysis of an all-in-plane spin-torque oscillator using injection locking to an external microwave magnetic field. Applied Physics Express, 2021, 14, 053001.	1.1	3
22	Magnetic properties and microstructure of Sm5Fe17-based composite magnets. Acta Materialia, 2021, 212, 116912.	3.8	5
23	Recent advances in SmFe ₁₂ -based permanent magnets. Science and Technology of Advanced Materials, 2021, 22, 449-460.	2.8	30
24	Most frequently asked questions about the coercivity of Nd-Fe-B permanent magnets. Science and Technology of Advanced Materials, 2021, 22, 386-403.	2.8	47
25	Phase relations and extrinsic magnetic properties of Sm–(Fe,Co)–Ti–(Ga)-based alloys for ThMn12-type permanent magnets. Journal of Magnetism and Magnetic Materials, 2021, 529, 167866.	1.0	15
26	Role of V on the coercivity of SmFe12-based melt-spun ribbons revealed by machine learning and microstructure characterizations. Scripta Materialia, 2021, 200, 113925.	2.6	18
27	Origin of coercivity in an anisotropic Sm(Fe,Ti,V)12-based sintered magnet. Acta Materialia, 2021, 217, 117161.	3.8	20
28	Reduction of hysteresis in (La1-Ce) (Mn Fe11.4-)Si1.6 magnetocaloric compounds for cryogenic magnetic refrigeration. Acta Materialia, 2021, 220, 117286.	3.8	24
29	Significant coercivity enhancement of hot-deformed bulk magnets by two-step diffusion process using a minimal amount of Dy. Scripta Materialia, 2021, 205, 114207.	2.6	16
30	Analysis method of a spin-torque oscillator using dc resistance change during injection locking to an external microwave magnetic field. Applied Physics Letters, 2021, 119, .	1.5	3
31	Magnetic, magnetoresistive and low-frequency noise properties of tunnel magnetoresistance sensor devices with amorphous CoFeBTa soft magnetic layers. Journal Physics D: Applied Physics, 2021, 54, 095002.	1.3	10
32	Analysis of a Spin-Torque Oscillator Using Injection Locking to an External Microwave Field. , 2021, , .		0
33	Influence of LRE (Ce, Y, and La) on microstructure and magnetic properties of (NdO.8LREO.2)–Fe–B hot-deformed magnets. AlP Advances, 2021, 11, 115118.	0.6	2
34	Thermal decomposition of ThMn12-type phase and its optimum stabilizing elements in SmFe12-based alloys. Journal of Alloys and Compounds, 2020, 813, 152224.	2.8	48
35	An alternative approach to the measurement of anisotropy field – Single grain extraction. Journal of Magnetism and Magnetic Materials, 2020, 494, 165747.	1.0	11
36	Relationship between the thermal stability of coercivity and the aspect ratio of grains in Nd-Fe-B magnets: Experimental and numerical approaches. Acta Materialia, 2020, 183, 408-417.	3.8	31

#	Article	IF	CITATIONS
37	On the temperature-dependent coercivities of anisotropic Nd-Fe-B magnet. Acta Materialia, 2020, 199, 288-296.	3.8	29
38	Direct detection and stochastic analysis on thermally activated domain-wall depinning events in micropatterned Nd-Fe-B hot-deformed magnets. Acta Materialia, 2020, 201, 7-13.	3.8	13
39	Tuning magnetocaloric effect of Ho1-Gd Ni2 and HoNi2-Co alloys around hydrogen liquefaction temperature. Scripta Materialia, 2020, 188, 302-306.	2.6	21
40	Tuning transition temperature of magnetocaloric Mn1.8Fe0.2(P0.59Si0.41) alloys for cryogenic magnetic refrigeration. Scripta Materialia, 2020, 183, 127-132.	2.6	16
41	Achievement of high coercivity in Sm(Fe0.8Co0.2)12 anisotropic magnetic thin film by boron doping. Acta Materialia, 2020, 194, 337-342.	3.8	57
42	Simultaneous direct measurements of conventional and inverse magnetocaloric effects in Ni–Mn-based Heusler alloys using lock-in thermography technique. AIP Advances, 2020, 10, 065005.	0.6	9
43	Thermally-stable high coercivity Ce-substituted hot-deformed magnets with 20% Nd reduction. Acta Materialia, 2020, 190, 8-15.	3.8	47
44	Angular dependence and thermal stability of coercivity of Nd-rich Ga-doped Nd–Fe–B sintered magnet. Acta Materialia, 2020, 187, 66-72.	3.8	29
45	Anisotropy-induced spin reorientation in chemically modulated amorphous ferrimagnetic films. Physical Review Materials, 2020, 4, .	0.9	14
46	The effect of Zr substitution on saturation magnetization in (Sm1-xZrx)(Fe0.8Co0.2)12 compound with the ThMn12 structure. Acta Materialia, 2019, 178, 114-121.	3.8	40
47	Magnetic in-plane components of FePt nanogranular film on polycrystalline MgO underlayer for heat-assisted magnetic recording media. Acta Materialia, 2019, 177, 1-8.	3.8	13
48	Influence of Ti addition on microstructure and magnetic properties of a heavy-rare-earth-free Nd-Fe-B sintered magnet. Journal of Alloys and Compounds, 2019, 806, 1267-1275.	2.8	14
49	Anisotropic, single-crystalline SmFe12-based microparticles with high roundness fabricated by jet-milling. Journal of Alloys and Compounds, 2019, 804, 155-162.	2.8	40
50	Role of Co on the magnetic properties of Ce-substituted Nd-Fe-B hot-deformed magnets. Acta Materialia, 2019, 175, 1-10.	3.8	30
51	Development of high coercivity anisotropic Nd-Fe-B/Fe nanocomposite powder using hydrogenation disproportionation desorption recombination process. Acta Materialia, 2019, 175, 276-285.	3.8	27
52	Over 100% magnetoresistance ratio at room temperature in magnetic tunnel junctions with CuGaSe2 spacer layer. Applied Physics Letters, 2019, 114, .	1.5	7
53	Inducing out-of-plane precession of magnetization for microwave-assisted magnetic recording with an oscillating polarizer in a spin-torque oscillator. Applied Physics Letters, 2019, 114, .	1.5	16
54	Coercivity enhancement of selective laser sintered NdFeB magnets by grain boundary infiltration. Acta Materialia, 2019, 172, 66-71.	3.8	53

#	Article	IF	CITATIONS
55	Detection of elemental magnetization reversal events in a micro-patterned Nd-Fe-B hot-deformed magnet. AIP Advances, 2019, 9, 125052.	0.6	7
56	Observation of anomalous Ettingshausen effect and large transverse thermoelectric conductivity in permanent magnets. Applied Physics Letters, 2019, 115, .	1.5	44
57	Magnetization reversal process of anisotropic hot-deformed magnets observed by magneto-optical Kerr effect microscopy. Journal of Alloys and Compounds, 2019, 771, 51-59.	2.8	16
58	Design of spin-injection-layer in all-in-plane spin-torque-oscillator for microwave assisted magnetic recording. Journal of Magnetism and Magnetic Materials, 2019, 476, 361-370.	1.0	8
59	Impact of carbon segregant on microstructure and magnetic properties of FePt-C nanogranular films on MgO (001) substrate. Acta Materialia, 2019, 166, 413-423.	3.8	28
60	Development of ultra-fine grain sized SmFe12-based powders using hydrogenation disproportionation desorption recombination process. Acta Materialia, 2019, 165, 373-380.	3.8	33
61	Comparison of coercivity and squareness in hot-deformed and sintered magnets produced from a Nd-Fe-B-Cu-Ga alloy. Scripta Materialia, 2019, 160, 9-14.	2.6	31
62	Suppression of non-oriented grains in Nd-Fe-B hot-deformed magnets by Nb doping. Scripta Materialia, 2018, 147, 108-113.	2.6	22
63	Microstructural origin of hysteresis in Ni-Mn-In based magnetocaloric compounds. Acta Materialia, 2018, 147, 342-349.	3.8	28
64	Intrinsic magnetic properties of Sm(Fe1-Co)11Ti and Zr-substituted Sm1-yZr (Fe0.8Co0.2)11.5Ti0.5 compounds with ThMn12 structure toward the development of permanent magnets. Acta Materialia, 2018, 153, 354-363.	3.8	92
65	Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scripta Materialia, 2018, 151, 6-13.	2.6	101
66	Temperature and field direction dependences of first-order reversal curve (FORC) diagrams of hot-deformed Nd-Fe-B magnets. Journal of Magnetism and Magnetic Materials, 2018, 447, 110-115.	1.0	20
67	Coercivity enhancement of Nd-Fe-B hot-deformed magnets by the eutectic grain boundary diffusion process using Nd-Ga-Cu and Nd-Fe-Ga-Cu alloys. AIP Advances, 2018, 8, .	0.6	26
68	Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets. Scripta Materialia, 2018, 154, 253-258.	2.6	29
69	Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy. Acta Materialia, 2018, 144, 884-895.	3.8	89
70	Advances in Nd-Fe-B Based Permanent Magnets. Handbook of Magnetic Materials, 2018, 27, 269-372.	0.6	45
71	High magnetic field sensitivity in anti-ferromagnetically coupled 001-epitaxial [Co2Fe(Al0.5Si0.5)/Ag] <i>N</i> multilayers. Journal of Applied Physics, 2018, 124, .	1.1	6
72	Coercivity and its thermal stability of Nd Fe B hot-deformed magnets enhanced by the eutectic grain boundary diffusion process. Acta Materialia, 2018, 161, 171-181.	3.8	96

#	Article	IF	CITATIONS
73	Back-Hopping in Spin-Transfer-Torque Devices: Possible Origin and Countermeasures. Physical Review Applied, 2018, 9, .	1.5	18
74	The local structure in heavily boron-doped diamond and the effect this has on its electrochemical properties. Carbon, 2018, 137, 333-342.	5.4	44
75	Microstructure of a Dy-free Nd-Fe-B sintered magnet with 2â€ [−] T coercivity. Acta Materialia, 2018, 156, 146-157.	3.8	56
76	Microstructure and magnetic properties of FePt-(C,SiO2) granular films deposited on MgO, MgTiO, and MgTiON underlayers. Scripta Materialia, 2018, 157, 1-5.	2.6	13
77	Reprint of Prospect for HRE-free high coercivity Nd-Fe-B permanent magnets. Scripta Materialia, 2018, 154, 277-283.	2.6	18
78	Pt surface segregation in L1 0 -FePt nano-grains. Scripta Materialia, 2017, 135, 88-91.	2.6	12
79	High frequency out-of-plane oscillation with large cone angle in mag-flip spin torque oscillators for microwave assisted magnetic recording. Applied Physics Letters, 2017, 110, .	1.5	25
80	Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-optical Kerr effect microscopy. Acta Materialia, 2017, 135, 68-76.	3.8	103
81	Structural origin of hysteresis for hexagonal (Mn,Fe) 2 (P,Si) magneto-caloric compound. Scripta Materialia, 2017, 138, 96-99.	2.6	17
82	Microstructure and in-plane component of L10-FePt films deposited on MgO and MgAl2O4 substrates. Scripta Materialia, 2017, 130, 247-251.	2.6	18
83	Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets. Acta Materialia, 2017, 126, 1-10.	3.8	129
84	Annealing effect on current-driven domain wall motion in Pt/[Co/Ni] wire. Journal of Applied Physics, 2017, 122, .	1.1	4
85	Significant reduction of critical currents in MRAM designs using dual free layer with perpendicular and in-plane anisotropy. Applied Physics Letters, 2017, 110, .	1.5	5
86	Fieldlike and Dampinglike Spin-Transfer Torque in Magnetic Multilayers. Physical Review Applied, 2017, 7, .	1.5	20
87	Coercivities of hot-deformed magnets processed from amorphous and nanocrystalline precursors. Acta Materialia, 2017, 123, 1-10.	3.8	39
88	Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process using Nd 62 Dy 20 Al 18 alloy. Scripta Materialia, 2017, 129, 44-47.	2.6	86
89	Microstructure and magnetic properties of grain boundary modified recycled Nd-Fe-B sintered magnets. Journal of Alloys and Compounds, 2017, 694, 175-184.	2.8	34
90	Micromagnetic Simulations of Magnetization Reversals in Nd-Fe-B Based Permanent Magnets. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 11-18.	0.2	1

#	Article	IF	CITATIONS
91	On the synthesis and microstructure analysis of high performance MnBi. AIP Advances, 2016, 6, .	0.6	24
92	Reduction of critical current density for out-of-plane mode oscillation in a mag-flip spin torque oscillator using highly spin-polarized Co2Fe(Ga0.5Ge0.5) spin injection layer. Applied Physics Letters, 2016, 108, .	1.5	23
93	Coercivity of the Nd–Fe–B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys. Journal of Magnetism and Magnetic Materials, 2016, 412, 234-242.	1.0	41
94	Micromagnetic Simulations of Magnetization Reversals in Nd-Fe-B Based Permanent Magnets. Materials Transactions, 2016, 57, 1221-1229.	0.4	27
95	Coercivity enhancement of hot-deformed Nd-Fe-B magnets by the eutectic grain boundary diffusion process. Journal of Alloys and Compounds, 2016, 666, 432-439.	2.8	86
96	Magnetization reversal of FePt based exchange coupled composite media. Acta Materialia, 2016, 111, 47-55.	3.8	24
97	The influence of grain morphology and easy axis orientation on the coercivity of Sm(Co0.9Cu0.1)5 thin films. Acta Materialia, 2016, 107, 49-58.	3.8	19
98	Magnetic and structural properties of MnRh thin Films. Journal of Magnetism and Magnetic Materials, 2016, 401, 144-149.	1.0	5
99	Structure Optimization of FePt–C Nanogranular Films for Heat-Assisted Magnetic Recording Media. IEEE Transactions on Magnetics, 2016, 52, 1-8.	1.2	9
100	Low-temperature Diffusion Process for Hot-deformed Bulk Permanent Magnet using RE-Cu Eutectic Alloy. IEEJ Transactions on Fundamentals and Materials, 2016, 136, 478-483.	0.2	0
101	Temperature-dependent magnetization reversal process and coercivity mechanism in Nd-Fe-B hot-deformed magnets. Journal of Applied Physics, 2015, 118, .	1.1	38
102	Energy barrier analysis on hot-deformed Nd-Fe-B magnets. , 2015, , .		0
103	Effect of MgO underlayer misorientation on the texture and magnetic property of FePt–C granular film. Acta Materialia, 2015, 91, 41-49.	3.8	49
104	Preparation, Characterization, and Modeling of Ultrahigh Coercivity Sm–Co Thin Films. Advanced Electronic Materials, 2015, 1, 1500009.	2.6	27
105	Microstructure and temperature dependent of coercivity of hot-deformed Nd–Fe–B magnets diffusion processed with Pr–Cu alloy. Acta Materialia, 2015, 99, 297-306.	3.8	127
106	Thermal stability of coercivity in grain boundary modified anisotropic hot-deformed Nd-Fe-B magnets. , 2015, , .		0
107	Mechanism of the texture development in hydrogen-disproportionation–desorption-recombination (HDDR) processed Nd–Fe–B powders. Acta Materialia, 2015, 85, 42-52.	3.8	49
108	Hard magnetic properties of spacer-layer-tuned NdFeB/Ta/Fe nanocomposite films. Acta Materialia, 2015, 84, 405-412.	3.8	35

#	Article	IF	CITATIONS
109	Grain size dependence of coercivity of hot-deformed Nd–Fe–B anisotropic magnets. Acta Materialia, 2015, 82, 336-343.	3.8	173
110	Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets. Journal of Applied Physics, 2014, 115, .	1.1	73
111	Multi-scale characterization by FIB-SEM/TEM/3DAP. Microscopy (Oxford, England), 2014, 63, i6-i7.	0.7	3
112	Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe _{1â^'x} Mn _x PO ₄ prepared by hydrothermal technique. RSC Advances, 2014, 4, 64429-64437.	1.7	16
113	Magnetic and structural properties of MnBi multilayered thin films. Journal of Applied Physics, 2014, 115, .	1.1	34
114	Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets. Journal of Applied Physics, 2014, 115, .	1.1	26
115	Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd–Fe–B sintered magnets. Scripta Materialia, 2014, 89, 29-32.	2.6	164
116	High-coercivity hot-deformed Nd–Fe–B permanent magnets processed by Nd–Cu eutectic diffusion under expansion constraint. Scripta Materialia, 2014, 81, 48-51.	2.6	136
117	High-coercivity ultrafine-grained anisotropic Nd–Fe–B magnets processed by hot deformation and the Nd–Cu grain boundary diffusion process. Acta Materialia, 2013, 61, 6622-6634.	3.8	252
118	Enhancement of coercivity of hot-deformed Nd–Fe–B anisotropic magnet by low-temperature grain boundary diffusion of Nd60Dy20Cu20 eutectic alloy. Scripta Materialia, 2013, 69, 647-650.	2.6	114
119	Effect of Nd content on the microstructure and coercivity of hot-deformed Nd–Fe–B permanent magnets. Acta Materialia, 2013, 61, 5387-5399.	3.8	196
120	Photoemission electron microscopy study of sub-200 nm self-assembled La0.7Sr0.3MnO3 epitaxial islands. Nanoscale, 2013, 5, 2990.	2.8	9
121	Coercivity enhancement of rapidly solidified Nd–Fe–B magnet powders. Scripta Materialia, 2013, 68, 167-170.	2.6	46
122	Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries. Scripta Materialia, 2013, 69, 92-95.	2.6	23
123	The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets. Acta Materialia, 2013, 61, 1982-1990.	3.8	248
124	High-coercivity Nd–Fe–B thick films without heavy rare earth additions. Acta Materialia, 2013, 61, 4920-4927.	3.8	42
125	EFFECT OF NANOCRYSTALLIZATION ANNEALING ON MAGNETIC PROPERTIES AND MAGNETOIMPEDANCE OF CO-BASE RIBBONS. International Journal of Modern Physics Conference Series, 2012, 05, 841-846.	0.7	0
126	Microstructure-Coercivity Relationships of Nd-Fe-B Base Permanent Magnets. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2012, 76, 2-11.	0.2	21

#	Article	IF	CITATIONS
127	Effect of ball-milling surfactants on the interface chemistry in hot-compacted SmCo5 magnets. Acta Materialia, 2012, 60, 6685-6691.	3.8	32
128	Strategy for high-coercivity Nd–Fe–B magnets. Scripta Materialia, 2012, 67, 530-535.	2.6	542
129	Grain boundary and interface chemistry of an Nd–Fe–B-based sintered magnet. Acta Materialia, 2012, 60, 819-830.	3.8	343
130	The effect of the thermal decomposition reaction on the mechanical and magnetocaloric properties of La(Fe,Si,Co)13. Acta Materialia, 2012, 60, 4268-4276.	3.8	76
131	Enhanced coercivity of spark plasma sintered Zn-bonded Sm–Fe–N magnets. Scripta Materialia, 2012, 67, 153-156.	2.6	32
132	Microstructure of fine-grained Nd–Fe–B sintered magnets with high coercivity. Scripta Materialia, 2011, 65, 396-399.	2.6	165
133	Broadening the applications of the atom probe technique by ultraviolet femtosecond laser. Ultramicroscopy, 2011, 111, 576-583.	0.8	97
134	Distribution of Dy in high-coercivity (Nd,Dy)–Fe–B sintered magnet. Acta Materialia, 2011, 59, 3061-3069.	3.8	132
135	Coercivity enhancement of HDDR-processed Nd–Fe–B permanent magnet with the rapid hot-press consolidation process. Journal of Magnetism and Magnetic Materials, 2011, 323, 115-121.	1.0	32
136	Quantitative laser atom probe analyses of hydrogenation-disproportionated Nd–Fe–B powders. Ultramicroscopy, 2011, 111, 615-618.	0.8	16
137	Coercivity enhancement of hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B powders by the diffusion of Nd–Cu eutectic alloys. Scripta Materialia, 2010, 63, 1124-1127.	2.6	219
138	Effect of Ga addition on the microstructure and magnetic properties of hydrogenation–disproportionation–desorption–recombination processed Nd–Fe–B powder. Acta Materialia, 2010, 58, 1309-1316.	3.8	62
139	Grain boundary structure and chemistry of Dy-diffusion processed Nd–Fe–B sintered magnets. Journal of Applied Physics, 2010, 107,	1.1	127
140	Anisotropic Nd–Fe–B nanocrystalline magnets processed by spark plasma sintering and in situ hot pressing of hydrogenation–decomposition–desorption–recombination powder. Scripta Materialia, 2009, 61, 978-981.	2.6	40