Pamela A Silver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6155079/publications.pdf

Version: 2024-02-01

173 papers

23,296 citations

82 h-index 9865 146 g-index

227 all docs

227 docs citations

times ranked

227

30443 citing authors

#	Article	IF	CITATIONS
1	Natural and Designed Proteins Inspired by Extremotolerant Organisms Can Form Condensates and Attenuate Apoptosis in Human Cells. ACS Synthetic Biology, 2022, 11, 1292-1302.	1.9	9
2	High-Content Screening and Computational Prediction Reveal Viral Genes That Suppress the Innate Immune Response. MSystems, 2022, 7, e0146621.	1.7	5
3	Exploring targeting peptide-shell interactions in encapsulin nanocompartments. Scientific Reports, 2021, 11, 4951.	1.6	24
4	Theranostic cells: emerging clinical applications of synthetic biology. Nature Reviews Genetics, 2021, 22, 730-746.	7.7	49
5	Modular and Single-Cell Sensors of Bacterial Ser/Thr Kinase Activity. ACS Synthetic Biology, 2021, 10, 2340-2350.	1.9	2
6	Rational engineering of an erythropoietin fusion protein to treat hypoxia. Protein Engineering, Design and Selection, 2021, 34, .	1.0	3
7	Rational Design of a Bifunctional AND-Gate Ligand To Modulate Cell–Cell Interactions. ACS Synthetic Biology, 2020, 9, 191-197.	1.9	6
8	Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metabolic Engineering, 2020, 62, 207-220.	3.6	60
9	In situ reprogramming of gut bacteria by oral delivery. Nature Communications, 2020, 11, 5030.	5. 8	58
10	Barcoded microbial system for high-resolution object provenance. Science, 2020, 368, 1135-1140.	6.0	27
11	Enabling community-based metrology for wood-degrading fungi. Fungal Biology and Biotechnology, 2020, 7, 2.	2.5	8
12	The case for biotech on Mars. Nature Biotechnology, 2020, 38, 401-407.	9.4	53
13	Synthetic Cassettes for pH-Mediated Sensing, Counting, and Containment. Cell Reports, 2020, 30, 3139-3148.e4.	2.9	36
14	Toward a translationally independent RNA-based synthetic oscillator using deactivated CRISPR-Cas. Nucleic Acids Research, 2020, 48, 8165-8177.	6.5	18
15	Stable Neutralization of a Virulence Factor in Bacteria Using Temperate Phage in the Mammalian Gut. MSystems, 2020, 5, .	1.7	36
16	Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nature Methods, 2020, 17, 481-494.	9.0	97
17	Controlling the Implementation of Transgenic Microbes: Are We Ready for What Synthetic Biology Has to Offer?. Molecular Cell, 2020, 78, 614-623.	4.5	28
18	Engineered Interspecies Amino Acid Cross-Feeding Increases Population Evenness in a Synthetic Bacterial Consortium. MSystems, 2019, 4, .	1.7	39

#	Article	IF	CITATIONS
19	Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nature Communications, 2019, 10, 4665.	5.8	54
20	De novo-designed translation-repressing riboregulators for multi-input cellular logic. Nature Chemical Biology, 2019, 15, 1173-1182.	3.9	90
21	Identification of a Fifth Antibacterial Toxin Produced by a Single Bacteroides fragilis Strain. Journal of Bacteriology, 2019, 201, .	1.0	19
22	Harnessing undomesticated life. Nature Microbiology, 2019, 4, 212-213.	5.9	8
23	Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model. Cell Host and Microbe, 2019, 25, 803-814.e5.	5.1	317
24	Synthetic Gene Circuits Enable Systems-Level Biosensor Trigger Discovery at the Host-Microbe Interface. MSystems, 2019, 4, .	1.7	32
25	Early-Career Scientists Shaping the World. MSystems, 2019, 4, .	1.7	0
26	Beyond the Four Bases: A Home Run for Synthetic Epigenetic Control?. Molecular Cell, 2019, 74, 5-7.	4.5	6
27	The Discovery of Twenty-Eight New Encapsulin Sequences, Including Three in Anammox Bacteria. Scientific Reports, 2019, 9, 20122.	1.6	34
28	A Synthetic System That Senses <i>Candida albicans</i> and Inhibits Virulence Factors. ACS Synthetic Biology, 2019, 8, 434-444.	1.9	18
29	Large protein organelles form a new iron sequestration system with high storage capacity. ELife, 2019, 8, .	2.8	92
30	Minimizing side effects, maximizing returns: what makes a smart therapeutic design?. Biochemist, 2019, 41, 28-32.	0.2	0
31	Prokaryotic nanocompartments form synthetic organelles in a eukaryote. Nature Communications, 2018, 9, 1311.	5.8	107
32	Engineering bacteria for diagnostic and therapeutic applications. Nature Reviews Microbiology, 2018, 16, 214-225.	13.6	267
33	Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression. Applied and Environmental Microbiology, 2018, 84, .	1.4	15
34	Solar-powered CO2 reduction by a hybrid biological inorganic system. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358, 411-415.	2.0	29
35	Synthetic genome recoding: new genetic codes for new features. Current Genetics, 2018, 64, 327-333.	0.8	16
36	Escherichia coli NGF-1, a Genetically Tractable, Efficiently Colonizing Murine Gut Isolate. Microbiology Resource Announcements, 2018, 7, .	0.3	6

#	Article	IF	CITATIONS
37	Mammalian Cells Engineered To Produce New Steroids. ChemBioChem, 2018, 19, 1827-1833.	1.3	1
38	Quorum Sensing Can Be Repurposed To Promote Information Transfer between Bacteria in the Mammalian Gut. ACS Synthetic Biology, 2018, 7, 2270-2281.	1.9	26
39	Efficient size-independent chromosome delivery from yeast to cultured cell lines. Nucleic Acids Research, 2017, 45, gkw1252.	6.5	18
40	Engineering carbon fixation with artificial protein organelles. Current Opinion in Biotechnology, 2017, 46, 42-50.	3.3	45
41	Widespread distribution of encapsulin nanocompartments reveals functional diversity. Nature Microbiology, 2017, 2, 17029.	5.9	129
42	Large-scale recoding of a bacterial genome by iterative recombineering of synthetic DNA. Nucleic Acids Research, 2017, 45, 6971-6980.	6.5	54
43	Ambient nitrogen reduction cycle using a hybrid inorganic–biological system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6450-6455.	3.3	167
44	Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nature Biotechnology, 2017, 35, 653-658.	9.4	283
45	13C-Labeling the carbon-fixation pathway of a highly efficient artificial photosynthetic system. Faraday Discussions, 2017, 198, 529-537.	1.6	11
46	Superresolution microscopy of the \hat{l}^2 -carboxysome reveals a homogeneous matrix. Molecular Biology of the Cell, 2017, 28, 2734-2745.	0.9	14
47	Rational Design of Evolutionarily Stable Microbial Kill Switches. Molecular Cell, 2017, 68, 686-697.e3.	4.5	108
48	Biological-inorganic hybrid systems as a generalized platform for chemical production. Current Opinion in Chemical Biology, 2017, 41, 107-113.	2.8	36
49	Synthetic photosynthetic consortia define interactions leading to robustness and photoproduction. Journal of Biological Engineering, 2017, 11 , 4 .	2.0	97
50	Complex cellular logic computation using ribocomputing devices. Nature, 2017, 548, 117-121.	13.7	321
51	Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution. Scientific Reports, 2016, 6, 38019.	1.6	31
52	Ribocomputing devices for sophisticated in vivo logic computation. , 2016, , .		1
53	Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5245-5250.	3.3	16
54	Synthetic Lipid-Containing Scaffolds Enhance Production by Colocalizing Enzymes. ACS Synthetic Biology, $2016, 5, 1396-1403$.	1.9	39

#	Article	IF	CITATIONS
55	A Catalytic Nanoreactor Based on in Vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment. ChemBioChem, 2016, 17, 1931-1935.	1.3	102
56	Streptomyces thermoautotrophicus does not fix nitrogen. Scientific Reports, 2016, 6, 20086.	1.6	31
57	Creating Single-Copy Genetic Circuits. Molecular Cell, 2016, 63, 329-336.	4.5	62
58	Converting a Natural Protein Compartment into a Nanofactory for the Size-Constrained Synthesis of Antimicrobial Silver Nanoparticles. ACS Synthetic Biology, 2016, 5, 1497-1504.	1.9	65
59	Building Spatial Synthetic Biology with Compartments, Scaffolds, and Communities. Cold Spring Harbor Perspectives in Biology, 2016, 8, a024018.	2.3	46
60	Grown, Printed, and Biologically Augmented: An Additively Manufactured Microfluidic Wearable, Functionally Templated for Synthetic Microbes. 3D Printing and Additive Manufacturing, 2016, 3, 79-89.	1.4	32
61	Water splitting–biosynthetic system with CO ₂ reduction efficiencies exceeding photosynthesis. Science, 2016, 352, 1210-1213.	6.0	760
62	The Genome Project-Write. Science, 2016, 353, 126-127.	6.0	194
63	Engineering acyl carrier protein to enhance production of shortened fatty acids. Biotechnology for Biofuels, 2016, 9, 24.	6.2	19
64	A Tunable Protein Piston That Breaks Membranes to Release Encapsulated Cargo. ACS Synthetic Biology, 2016, 5, 303-311.	1.9	19
65	Tools for the Microbiome: Nano and Beyond. ACS Nano, 2016, 10, 6-37.	7.3	137
66	Encapsulation as a Strategy for the Design of Biological Compartmentalization. Journal of Molecular Biology, 2016, 428, 916-927.	2.0	58
67	Identification and selective expansion of functionally superior T cells expressing chimeric antigen receptors. Journal of Translational Medicine, 2015, 13, 161.	1.8	24
68	Synthetic biology expands chemical control of microorganisms. Current Opinion in Chemical Biology, 2015, 28, 20-28.	2.8	27
69	A distributed cell division counter reveals growth dynamics in the gut microbiota. Nature Communications, 2015, 6, 10039.	5.8	50
70	Using synthetic RNAs as scaffolds and regulators. Nature Structural and Molecular Biology, 2015, 22, 8-10.	3.6	26
71	Efficient solar-to-fuels production from a hybrid microbial–water-splitting catalyst system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2337-2342.	3.3	366
72	Transplantability of a circadian clock to a noncircadian organism. Science Advances, $2015, 1, \ldots$	4.7	29

#	Article	IF	Citations
73	Better together: engineering and application of microbial symbioses. Current Opinion in Biotechnology, 2015, 36, 40-49.	3.3	226
74	<i>In vivo</i> co-localization of enzymes on RNA scaffolds increases metabolic production in a geometrically dependent manner. Nucleic Acids Research, 2014, 42, 9493-9503.	6.5	143
75	HITS-CLIP and Integrative Modeling Define the Rbfox Splicing-Regulatory Network Linked to Brain Development and Autism. Cell Reports, 2014, 6, 1139-1152.	2.9	326
76	Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4838-4843.	3.3	306
77	Integrating Biological Redesign: Where Synthetic Biology Came From and Where It Needs to Go. Cell, 2014, 157, 151-161.	13.5	211
78	Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nature Reviews Molecular Cell Biology, 2014, 15, 95-107.	16.1	246
79	Designing Cell-Targeted Therapeutic Proteins Reveals the Interplay between Domain Connectivity and Cell Binding. Biophysical Journal, 2014, 107, 2456-2466.	0.2	6
80	Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell, 2014, 159, 925-939.	13.5	646
81	Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Research, 2014, 42, 681-689.	6.5	72
82	Unique nucleotide sequence–guided assembly of repetitive DNA parts for synthetic biology applications. Nature Protocols, 2014, 9, 2075-2089.	5.5	64
83	Transient Gene Expression in Tobacco using Gibson Assembly and the Gene Gun. Journal of Visualized Experiments, 2014, , .	0.2	7
84	Induced sensitivity of <i>Bacillus subtilis </i> colony morphology to mechanical media compression. Peerl, 2014, 2, e597.	0.9	5
85	Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11290-11295.	3.3	171
86	Expression of the sub-pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth. Metabolic Engineering, 2013, 16, 130-139.	3.6	73
87	Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Research, 2013, 41, 9967-9975.	6.5	59
88	The Bacterial Carbon-Fixing Organelle Is Formed by Shell Envelopment of Preassembled Cargo. PLoS ONE, 2013, 8, e76127.	1.1	114
89	Dynamics simulations for engineering macromolecular interactions. Chaos, 2013, 23, 025110.	1.0	10
90	A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Nucleic Acids Research, 2012, 40, 5180-5187.	6.5	105

#	Article	IF	Citations
91	Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway. PLoS Biology, 2012, 10, e1001269.	2.6	48
92	Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Research, 2012, 40, 7584-7595.	6.5	137
93	Modularity of a carbon-fixing protein organelle. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 478-483.	3.3	231
94	Improving carbon fixation pathways. Current Opinion in Chemical Biology, 2012, 16, 337-344.	2.8	129
95	Synthetic meets cell biology. Molecular Biology of the Cell, 2012, 23, 967-967.	0.9	0
96	Designing and using RNA scaffolds to assemble proteins in vivo. Nature Protocols, 2012, 7, 1797-1807.	5 . 5	57
97	Natural strategies for the spatial optimization of metabolism in synthetic biology. Nature Chemical Biology, 2012, 8, 527-535.	3.9	349
98	Designing biological compartmentalization. Trends in Cell Biology, 2012, 22, 662-670.	3.6	257
99	Rerouting Carbon Flux To Enhance Photosynthetic Productivity. Applied and Environmental Microbiology, 2012, 78, 2660-2668.	1.4	298
100	A BioBrick compatible strategy for genetic modification of plants. Journal of Biological Engineering, 2012, 6, 8.	2.0	22
101	Synthetic memory circuits for tracking human cell fate. Genes and Development, 2012, 26, 1486-1497.	2.7	66
102	Parts plus pipes: Synthetic biology approaches to metabolic engineering. Metabolic Engineering, 2012, 14, 223-232.	3.6	119
103	Spatial and Temporal Organization of Chromosome Duplication and Segregation in the Cyanobacterium Synechococcus elongatus PCC 7942. PLoS ONE, 2012, 7, e47837.	1.1	57
104	Rewiring hydrogenase-dependent redox circuits in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3941-3946.	3.3	119
105	Organization of Intracellular Reactions with Rationally Designed RNA Assemblies. Science, 2011, 333, 470-474.	6.0	574
106	Engineering cyanobacteria to generate high-value products. Trends in Biotechnology, 2011, 29, 95-103.	4.9	443
107	A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism. Journal of Biological Engineering, 2011, 5, 7.	2.0	24
108	Synthetic circuit identifies subpopulations with sustained memory of DNA damage. Genes and Development, 2011, 25, 434-439.	2.7	32

#	Article	IF	CITATIONS
109	Recording cellular experiences of DNA damage. Cell Cycle, 2011, 10, 2410-2411.	1.3	2
110	Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology, 2011, 10, 359-364.	0.9	19
111	Towards a Synthetic Chloroplast. PLoS ONE, 2011, 6, e18877.	1.1	59
112	Insulation of a synthetic hydrogen metabolism circuit in bacteria. Journal of Biological Engineering, 2010, 4, 3.	2.0	108
113	Knowing when to change: reprogramming (my) life. Nature Cell Biology, 2010, 12, 730-730.	4.6	0
114	Anti-glycophorin single-chain Fv fusion to low-affinity mutant erythropoietin improves red blood cell-lineage specificity. Protein Engineering, Design and Selection, 2010, 23, 251-260.	1.0	17
115	Spatially Ordered Dynamics of the Bacterial Carbon Fixation Machinery. Science, 2010, 327, 1258-1261.	6.0	289
116	Emergent cooperation in microbial metabolism. Molecular Systems Biology, 2010, 6, 407.	3.2	301
117	Genome-wide RNAi screen discovers functional coupling of alternative splicing and cell cycle control to apoptosis regulation. Cell Cycle, 2010, 9, 4419-4421.	1.3	4
118	Engineering Cyanobacteria To Synthesize and Export Hydrophilic Products. Applied and Environmental Microbiology, 2010, 76, 3462-3466.	1.4	222
119	An Alternative Splicing Network Links Cell-Cycle Control to Apoptosis. Cell, 2010, 142, 625-636.	13.5	273
120	Dynamics in the mixed microbial concourse. Genes and Development, 2010, 24, 2603-2614.	2.7	159
121	Making Biology Easier to Engineer. BioSocieties, 2009, 4, 283-289.	0.8	9
122	Eukaryotic systems broaden the scope of synthetic biology. Journal of Cell Biology, 2009, 187, 589-596.	2.3	38
123	Systems-Level Engineering of Nonfermentative Metabolism in Yeast. Genetics, 2009, 183, 385-397.	1.2	31
124	Learning a Prior on Regulatory Potential from eQTL Data. PLoS Genetics, 2009, 5, e1000358.	1.5	177
125	Harnessing nature's toolbox: regulatory elements for synthetic biology. Journal of the Royal Society Interface, 2009, 6, S535-46.	1.5	42
126	Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks. Molecular BioSystems, 2009, 5, 704.	2.9	55

#	Article	IF	Citations
127	Global analysis of mRNA splicing. Rna, 2008, 14, 197-203.	1.6	69
128	Coupling and coordination in gene expression processes: a systems biology view. Nature Reviews Genetics, 2008, 9, 38-48.	7.7	184
129	Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production. ACS Chemical Biology, 2008, 3, 13-16.	1.6	91
130	Enhancement of Cell Type Specificity by Quantitative Modulation of a Chimeric Ligand. Journal of Biological Chemistry, 2008, 283, 8469-8476.	1.6	27
131	Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes and Development, 2008, 22, 627-639.	2.7	165
132	CARM1 Regulates Estrogen-Stimulated Breast Cancer Growth through Up-regulation of $\langle i \rangle$ E2F1 $\langle i \rangle$. Cancer Research, 2008, 68, 301-306.	0.4	176
133	Connecting the Genome to the Cytoplasm. FASEB Journal, 2008, 22, 112.1.	0.2	0
134	Functional Specificity among Ribosomal Proteins Regulates Gene Expression. Cell, 2007, 131, 557-571.	13.5	323
135	Designing biological systems. Genes and Development, 2007, 21, 242-254.	2.7	128
136	Genetically Encoded Short Peptide Tags for Orthogonal Protein Labeling by Sfp and AcpS Phosphopantetheinyl Transferases. ACS Chemical Biology, 2007, 2, 337-346.	1.6	207
137	Rational design of memory in eukaryotic cells. Genes and Development, 2007, 21, 2271-2276.	2.7	208
138	Systems engineering without an engineer: Why we need systems biology. Complexity, 2007, 13, 22-29.	0.9	9
139	Genome-wide analysis of estrogen receptor binding sites. Nature Genetics, 2006, 38, 1289-1297.	9.4	1,227
140	Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes and Development, 2005, 19, 1188-1198.	2.7	171
141	Chromosome-Wide Mapping of Estrogen Receptor Binding Reveals Long-Range Regulation Requiring the Forkhead Protein FoxA1. Cell, 2005, 122, 33-43.	13.5	1,208
142	Arginine methyltransferase affects interactions and recruitment of mRNA processing and export factors. Genes and Development, 2004, 18, 2024-2035.	2.7	119
143	Class II Integrase Mutants with Changes in Putative Nuclear Localization Signals Are Primarily Blocked at a Postnuclear Entry Step of Human Immunodeficiency Virus Type 1 Replication. Journal of Virology, 2004, 78, 12735-12746.	1.5	115
144	Identification of an Evolutionarily Conserved Domain in Human Lens Epithelium-derived Growth Factor/Transcriptional Co-activator p75 (LEDGF/p75) That Binds HIV-1 Integrase. Journal of Biological Chemistry, 2004, 279, 48883-48892.	1.6	248

#	Article	IF	CITATIONS
145	Nuclear transport and cancer: from mechanism to intervention. Nature Reviews Cancer, 2004, 4, 106-117.	12.8	414
146	PRMT3 is a ribosomal protein methyltransferase that affects the cellular levels of ribosomal subunits. EMBO Journal, 2004, 23, 2641-2650.	3.5	148
147	A systems view of mRNP biology. Genes and Development, 2004, 18, 2845-2860.	2.7	137
148	Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization. Cell, 2004, 117, 427-439.	13.5	528
149	A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell, 2003, 4, 463-476.	7.7	329
150	Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nature Genetics, 2003, 33, 155-161.	9.4	187
151	A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12735-12740.	3.3	151
152	Bipartite Signals Mediate Subcellular Targeting of Tail-anchored Membrane Proteins in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2003, 278, 8219-8223.	1.6	156
153	The Genome-Wide Localization of Rsc9, a Component of the RSC Chromatin-Remodeling Complex, Changes in Response to Stress. Molecular Cell, 2002, 9, 563-573.	4.5	135
154	Protein and RNA Export from the Nucleus. Developmental Cell, 2002, 2, 261-272.	3.1	127
155	State of the Arg. Cell, 2001, 106, 5-8.	13.5	414
156	Messenger RNAs are recruited for nuclear export during transcription. Genes and Development, 2001, 15, 1771-1782.	2.7	193
157	The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nature Structural Biology, 2000, 7, 1165-1171.	9.7	112
158	Pre-mRNA processing factors are required for nuclear export. Rna, 2000, 6, 1737-1749.	1.6	161
159	Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in Saccharomyces cerevisiae. Journal of Cell Biology, 2000, 150, 461-474.	2.3	263
160	Mapping Interactions between Nuclear Transport Factors in Living Cells Reveals Pathways through the Nuclear Pore Complex. Molecular Cell, 2000, 5, 133-140.	4. 5	135
161	Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation. Rna, 1999, 5, 272-280.	1.6	75
162	Slk19p Is a Centromere Protein That Functions to Stabilize Mitotic Spindles. Journal of Cell Biology, 1999, 146, 415-425.	2.3	136

#	Article	IF	CITATIONS
163	In or out? Regulating nuclear transport. Current Opinion in Cell Biology, 1999, 11, 241-247.	2.6	131
164	Elimination of Replication Block Protein Fob1 Extends the Life Span of Yeast Mother Cells. Molecular Cell, 1999, 3, 447-455.	4.5	380
165	Interactions between a Nuclear Transporter and a Subset of Nuclear Pore Complex Proteins Depend on Ran GTPase. Molecular and Cellular Biology, 1999, 19, 1547-1557.	1.1	124
166	Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. Trends in Biochemical Sciences, 1998, 23, 244-245.	3.7	127
167	Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Molecular Microbiology, 1998, 28, 883-892.	1.2	189
168	Identification and Characterization of Two Putative Human Arginine Methyltransferases (HRMT1L1 and) Tj ETQqC	00 rgBT	/Overlock 10
169	The Yeast Dynactin Complex Is Involved in Partitioning the Mitotic Spindle between Mother and Daughter Cells during Anaphase B. Molecular Biology of the Cell, 1998, 9, 1741-1756.	0.9	109
170	Cse1p Is Required for Export of Srp1p/Importin- \hat{l}_{\pm} from the Nucleus in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 35142-35146.	1.6	108
171	A GTPase Controlling Nuclear Trafficking: Running the Right Way or Walking RANdomly?. Cell, 1996, 87, 1-4.	13.5	202
172	How proteins enter the nucleus. Cell, 1991, 64, 489-497.	13.5	599
173	Therapeutic potential of retroviral RNAi vectors. , 0, .		3