Carlos J Ciudad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6154599/publications.pdf Version: 2024-02-01

<u>CARLOS I CIUDAD</u>

#	Article	IF	CITATIONS
1	Targeting KRAS Regulation with PolyPurine Reverse Hoogsteen Oligonucleotides. International Journal of Molecular Sciences, 2022, 23, 2097.	4.1	4
2	Nucleic acids therapeutics using PolyPurine Reverse Hoogsteen hairpins. Biochemical Pharmacology, 2021, 189, 114371.	4.4	13
3	Polypurine Reverse-Hoogsteen Hairpins as a Tool for Exon Skipping at the Genomic Level in Mammalian Cells. International Journal of Molecular Sciences, 2021, 22, 3784.	4.1	5
4	Case Report: Fatigue and Bleeding in a Polymedicated Patient Using Several Herbal Supplementations, Detected with g-Nomic® Software. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 963-970.	0.7	0
5	Synthesis and validation of DOPY: A new gemini dioleylbispyridinium based amphiphile for nucleic acid transfection. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 165, 279-292.	4.3	7
6	PolyPurine Reverse Hoogsteen Hairpins Work as RNA Species for Gene Silencing. International Journal of Molecular Sciences, 2021, 22, 10025.	4.1	3
7	Correction of the aprt Gene Using Repair-Polypurine Reverse Hoogsteen Hairpins in Mammalian Cells. Molecular Therapy - Nucleic Acids, 2020, 19, 683-695.	5.1	11
8	Detection of a G-Quadruplex as a Regulatory Element in Thymidylate synthase for Gene Silencing Using Polypurine Reverse Hoogsteen Hairpins. International Journal of Molecular Sciences, 2020, 21, 5028.	4.1	7
9	Targeting replication stress response using polypurine reverse hoogsteen hairpins directed against WEE1 and CHK1 genes in human cancer cells. Biochemical Pharmacology, 2020, 175, 113911.	4.4	10
10	Gene Correction of Point Mutations Using PolyPurine Reverse Hoogsteen Hairpins Technology. Frontiers in Genome Editing, 2020, 2, 583577.	5.2	6
11	Parallel Clamps and Polypurine Hairpins (PPRH) for Gene Silencing and Triplexâ€Affinity Capture: Design, Synthesis, and Use. Current Protocols in Nucleic Acid Chemistry, 2019, 77, e78.	0.5	10
12	<p-nomic: a="" interpretation="" new="" p="" pharmacogenetics="" software<="">. Pharmacogenomics and Personalized Medicine, 2019, Volume 12, 75-85.</p-nomic:>	0.7	5
13	A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Letters, 2019, 452, 158-167.	7.2	2
14	Silencing PD-1 and PD-L1: the potential of PolyPurine Reverse Hoogsteen hairpins for the elimination of tumor cells. Immunotherapy, 2019, 11, 369-372.	2.0	9
15	Antitumoral and anti-inflammatory activities of the red alga Sphaerococcus coronopifolius. European Journal of Integrative Medicine, 2018, 18, 66-74.	1.7	8
16	Cancer immunotherapy using PolyPurine Reverse Hoogsteen hairpins targeting the PD-1/PD-L1 pathway in human tumor cells. PLoS ONE, 2018, 13, e0206818.	2.5	16
17	Resveratrol and Related Stilbenoids, Nutraceutical/Dietary Complements with Healthâ€Promoting Actions: Industrial Production, Safety, and the Search for Mode of Action. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 808-826.	11.7	38
18	Functional pharmacogenomics and toxicity of PolyPurine Reverse Hoogsteen hairpins directed against survivin in human cells. Biochemical Pharmacology, 2018, 155, 8-20.	4.4	13

#	Article	IF	CITATIONS
19	Health benefits of walnut polyphenols: An exploration beyond their lipid profile. Critical Reviews in Food Science and Nutrition, 2017, 57, 3373-3383.	10.3	100
20	Polypurine reverse-Hoogsteen (PPRH) oligonucleotides can form triplexes with their target sequences even under conditions where they fold into G-quadruplexes. Scientific Reports, 2017, 7, 39898.	3.3	11
21	A genomics approach identifies selective effects of trans-resveratrol in cerebral cortex neuron and glia gene expression. PLoS ONE, 2017, 12, e0176067.	2.5	9
22	Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. OncoTargets and Therapy, 2017, Volume 10, 503-514.	2.0	18
23	Glucose-6-phosphate dehydrogenase and transketolase modulate breast cancer cell metabolic reprogramming and correlate with poor patient outcome. Oncotarget, 2017, 8, 106693-106706.	1.8	62
24	Polypurine Reverse Hoogsteen Hairpins as a Gene Silencing Tool for Cancer. Current Medicinal Chemistry, 2017, 24, 2809-2826.	2.4	19
25	Silencing of CD47 and SIRPα by Polypurine reverse Hoogsteen hairpins to promote MCF-7 breast cancer cells death by PMA-differentiated THP-1 cells. BMC Immunology, 2016, 17, 32.	2.2	27
26	Correction of point mutations at the endogenous locus of the dihydrofolate reductase gene using repair-PolyPurine Reverse Hoogsteen hairpins in mammalian cells. Biochemical Pharmacology, 2016, 110-111, 16-24.	4.4	10
27	Urolithin A causes p21 up-regulation in prostate cancer cells. European Journal of Nutrition, 2016, 55, 1099-1112.	3.9	49
28	Alcohol enhances the psychostimulant and conditioning effects of mephedrone in adolescent mice; postulation of unique roles of D ₃ receptors and BDNF in place preference acquisition. British Journal of Pharmacology, 2015, 172, 4970-4984.	5.4	25
29	Improved Design of PPRHs for Gene Silencing. Molecular Pharmaceutics, 2015, 12, 867-877.	4.6	19
30	Effect of Polypurine Reverse Hoogsteen Hairpins on Relevant Cancer Target Genes in Different Human Cell Lines. Nucleic Acid Therapeutics, 2015, 25, 198-208.	3.6	20
31	Urolithin A, Walnut Polyphenol Metabolite, Causes Cell Cycle Arrest and Apoptosis in Prostate and Breast Cancer Cells. FASEB Journal, 2015, 29, 752.7.	0.5	1
32	Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells. Food and Function, 2014, 5, 2922-2930.	4.6	57
33	Stability and Immunogenicity Properties of the Gene-Silencing Polypurine Reverse Hoogsteen Hairpins. Molecular Pharmaceutics, 2014, 11, 254-264.	4.6	26
34	Molecular and functional characterization of LRP1 promoter polymorphism c.1-25 C>G (rs138854007). Atherosclerosis, 2014, 233, 178-185.	0.8	6
35	Repair of Single-Point Mutations by Polypurine Reverse Hoogsteen Hairpins. Human Gene Therapy Methods, 2014, 25, 288-302.	2.1	9
36	986: Urolithins A and B, walnut polyphenol metabolites, modulate androgen receptor expression in a prostate cancer cell model. European Journal of Cancer, 2014, 50, S240-S241.	2.8	0

#	Article	IF	CITATIONS
37	Polypurine reverse Hoogsteen hairpins as a gene therapy tool against survivin in human prostate cancer PC3 cells in vitro and in vivo. Biochemical Pharmacology, 2013, 86, 1541-1554.	4.4	32
38	Validation of miRNA-mRNA interactions by electrophoretic mobility shift assays. BMC Research Notes, 2013, 6, 454.	1.4	10
39	Cocoa flavanol metabolites activate <scp>HNF</scp> â€3β, <scp>S</scp> p1, and <scp>NFY</scp> â€mediated transcription of apolipoprotein <scp>AI</scp> in human cells. Molecular Nutrition and Food Research, 2013, 57, 986-995.	3.3	14
40	Therapeutic Targeting of Tumor Growth and Angiogenesis with a Novel Anti-S100A4 Monoclonal Antibody. PLoS ONE, 2013, 8, e72480.	2.5	86
41	The Redox State of Cytochrome C Modulates Resistance to Methotrexate in Human MCF7 Breast Cancer Cells. PLoS ONE, 2013, 8, e63276.	2.5	18
42	Identification of novel Sp1 targets involved in proliferation and cancer by functional genomics. Biochemical Pharmacology, 2012, 84, 1581-1591.	4.4	27
43	Transcriptional profiling of striatal neurons in response to single or concurrent activation of dopamine D2, adenosine A2A and metabotropic glutamate type 5 receptors: Focus on beta-synuclein expression. Gene, 2012, 508, 199-205.	2.2	5
44	Coffee Polyphenols Change the Expression of STAT5B and ATF-2 Modifying Cyclin D1 Levels in Cancer Cells. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-17.	4.0	17
45	CYP1A1 is overexpressed upon incubation of breast cancer cells with a polyphenolic cocoa extract. European Journal of Nutrition, 2012, 51, 465-476.	3.9	24
46	New π-arene ruthenium(II) piano-stool complexes with nitrogen ligands. Journal of Inorganic Biochemistry, 2012, 109, 72-81.	3.5	25
47	Coding Polypurine Hairpins Cause Target-Induced Cell Death in Breast Cancer Cells. Human Gene Therapy, 2011, 22, 451-463.	2.7	26
48	UDP-glucuronosyltransferase 1A6 overexpression in breast cancer cells resistant to methotrexate. Biochemical Pharmacology, 2011, 81, 60-70.	4.4	27
49	Underexpression of miR-224 in methotrexate resistant human colon cancer cells. Biochemical Pharmacology, 2011, 82, 1572-1582.	4.4	77
50	Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling. BMC Genomics, 2011, 12, 182.	2.8	8
51	A Lyophilized Red Grape Pomace Containing Proanthocyanidin-Rich Dietary Fiber Induces Genetic and Metabolic Alterations in Colon Mucosa of Female C57BL/6J Mice. Journal of Nutrition, 2011, 141, 1597-1604.	2.9	44
52	Overexpression of S100A4 in human cancer cell lines resistant to methotrexate. BMC Cancer, 2010, 10, 250.	2.6	25
53	Inhibition of cancer cell growth by ruthenium(II) cyclopentadienyl derivative complexes with heteroaromatic ligands. Journal of Inorganic Biochemistry, 2009, 103, 354-361.	3.5	71
54	Networking of differentially expressed genes in human cancer cells resistant to methotrexate. Genome Medicine, 2009, 1, 83.	8.2	52

#	Article	IF	CITATIONS
55	Polypurine Hairpins Directed against the Template Strand of DNA Knock Down the Expression of Mammalian Genes. Journal of Biological Chemistry, 2009, 284, 11579-11589.	3.4	38
56	Role of Caveolin 1, E-Cadherin, Enolase 2 and PKCalpha on resistance to methotrexate in human HT29 colon cancer cells. BMC Medical Genomics, 2008, 1, 35.	1.5	50
57	Transcriptional regulation of aldo-keto reductase 1C1 in HT29 human colon cancer cells resistant to methotrexate: Role in the cell cycle and apoptosis. Biochemical Pharmacology, 2008, 75, 414-426.	4.4	69
58	Transcriptional regulation of the 5′-flanking region of the human transcription factor Sp3 gene by NF-1, c-Myb, B-Myb, AP-1 and E2F. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 318-329.	1.9	12
59	Regulation of Sp1 by cell cycle related proteins. Cell Cycle, 2008, 7, 2856-2867.	2.6	64
60	Complexes of Pd(II) and Pt(II) with 9-Aminoacridine: Reactions with DNA and Study of Their Antiproliferative Activity. Bioinorganic Chemistry and Applications, 2007, 2007, 1-15.	4.1	29
61	Differentially expressed genes between high-risk human papillomavirus types in human cervical cancer cells. International Journal of Gynecological Cancer, 2007, 17, 484-491.	2.5	20
62	Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue. BMC Genomics, 2007, 8, 292.	2.8	19
63	Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. International Journal of Cancer, 2006, 119, 2733-2741.	5.1	119
64	Modulation of IMPDH2, survivin, topoisomerase I and vimentin increases sensitivity to methotrexate in HT29 human colon cancer cells. FEBS Journal, 2005, 272, 696-710.	4.7	38
65	Characterization of the 5′-flanking region of the human transcription factor Sp3 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2005, 1730, 126-136.	2.4	15
66	Gene Identification by cDNA Arrays in HPV-Positive Cervical Cancer. Archives of Medical Research, 2005, 36, 448-458.	3.3	29
67	Strand Displacement of Double-Stranded DNA by Triplex-Forming Antiparallel Purine-Hairpins. Oligonucleotides, 2005, 15, 269-283.	2.7	25
68	Targeting of sterically stabilised pH-sensitive liposomes to human T-leukaemia cells. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59, 359-366.	4.3	49
69	Epicatechin and a Cocoa Polyphenolic Extract Modulate Gene Expression in Human Caco-2 Cells. Journal of Nutrition, 2004, 134, 2509-2516.	2.9	44
70	Rosiglitazone upregulates caveolin-1 expression in THP-1 cells through a PPAR-dependent mechanism. Journal of Lipid Research, 2004, 45, 2015-2024.	4.2	58
71	Expression Profiles of a Human Pancreatic Cancer Cell Line upon Induction of Apoptosis Search for Modulators in Cancer Therapy. Oncology, 2004, 67, 277-290.	1.9	15
72	Use of siRNAs and Antisense Oligonucleotides Against Survivin RNA to Inhibit Steps Leading to Tumor Angiogenesis. Oligonucleotides, 2004, 14, 100-113.	2.7	61

#	Article	IF	CITATIONS
73	Up-regulation of the Kv3.4 potassium channel subunit in early stages of Alzheimer's disease. Journal of Neurochemistry, 2004, 91, 547-557.	3.9	78
74	A highly efficient electroporation method for the transfection of endothelial cells. Angiogenesis, 2004, 7, 235-241.	7.2	16
75	Anti-migratory and anti-angiogenic effect of p16: A novel localization at membrane ruffles and lamellipodia in endothelial cells. Angiogenesis, 2004, 7, 323-333.	7.2	30
76	A novel muscle DNA-binding activity in the GLUT1 promoter. Cellular and Molecular Life Sciences, 2004, 61, 709-720.	5.4	4
77	Atorvastatin reduces CD68, FABP4, and HBP expression in oxLDL-treated human macrophages. Biochemical and Biophysical Research Communications, 2004, 318, 265-274.	2.1	79
78	The expression of retinoblastoma and Sp1 is increased by low concentrations of cyclin-dependent kinase inhibitors. FEBS Journal, 2003, 270, 4809-4822.	0.2	10
79	CD4 Expression Decrease by Antisense Oligonucleotides: Inhibition of Rat T CD4+ Cell Reactivity. Oligonucleotides, 2003, 13, 217-228.	2.7	3
80	An Intron Is Required for Dihydrofolate Reductase Protein Stability. Journal of Biological Chemistry, 2003, 278, 38292-38300.	3.4	26
81	Transcriptional regulation of the human Sp1 gene promoter by the specificity protein (Sp) family members nuclear factor Y (NF-Y) and E2F. Biochemical Journal, 2003, 371, 265-275.	3.7	58
82	Development and Effects of Immunoliposomes Carrying an Antisense Oligonucleotide Against DHFR RNA and Directed Toward Human Breast Cancer Cells Overexpressing HER2. Oligonucleotides, 2002, 12, 311-325.	4.3	9
83	Inhibition of CD4 Expression by Antisense Oligonucleotides in PMA-Treated Lymphocytes. Oligonucleotides, 2002, 12, 399-410.	4.3	3
84	DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle cells. American Journal of Physiology - Endocrinology and Metabolism, 2001, 280, E229-E237.	3.5	200
85	Sp1 involvement in the 4β-phorbol 12-myristate 13-acetate (TPA)-mediated increase in resistance to methotrexate in Chinese hamster ovary cells. FEBS Journal, 2001, 268, 3163-3173.	0.2	28
86	Differential induction of stearoyl-CoA desaturase and acyl-CoA oxidase genes by fibrates in HepG2 cells. Biochemical Pharmacology, 2001, 61, 357-364.	4.4	12
87	Cloning and Characterization of the 5′-Flanking Region of the Human Transcription Factor Sp1 Gene. Journal of Biological Chemistry, 2001, 276, 22126-22132.	3.4	78
88	Differences in the Formation of PPARα-RXR/ <i>aco</i> PPRE Complexes between Responsive and Nonresponsive Species upon Fibrate Administration. Molecular Pharmacology, 2000, 58, 185-193.	2.3	25
89	Identification by RNA-based arbitrarily primed PCR of the involvement of cytochrome c oxidase in the development of resistance to methotrexate. Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1495, 319-326.	4.1	9
90	Effect of Differential Polyadenylation and Cell Growth Phase on Dihydrofolate Reductase mRNA Stability. Journal of Biological Chemistry, 1999, 274, 27807-27814.	3.4	15

#	Article	IF	CITATIONS
91	Effects of anti-sense oligonucleotides directed toward dihydrofolate reductase RNA in mammalian cultured cells. , 1999, 81, 785-792.		6
92	Retinoblastoma protein associates with SP1 and activates the hamster dihydrofolate reductase promoter. Oncogene, 1998, 16, 1931-1938.	5.9	47
93	4.P.128 Rat morris 7800 C1 and human HepG2 hepatoma cells - differences in their RXR and PPARβ/NUC1 content. Atherosclerosis, 1997, 134, 322.	0.8	Ο
94	Cell-Growth Regulation of the Hamster Dihydrofolate Reductase Gene Promoter by Transcription Factor Sp1. FEBS Journal, 1997, 249, 13-20.	0.2	25
95	Determination of Dihydrofolate Reductase Gene Amplification from Single Cell Colonies by Quantitative Polymerase Chain Reaction. Analytical Biochemistry, 1995, 224, 600-603.	2.4	9
96	Purine enzyme profile in human colon-carcinoma cell lines and differential sensitivity to deoxycoformycin and 2′-deoxyadenosine in combination. International Journal of Cancer, 1995, 62, 176-183.	5.1	22
97	Protein kinase C inhibitors reduce phorbol ester-induced resistance to methotrexate in Chinese hamster ovary cells. Biochemical Pharmacology, 1995, 50, 337-346.	4.4	7
98	Regulation of Mitochondrial 3-Hydroxy-3-methylglutaryl-coenzyme A Synthase Protein by Starvation, Fat Feeding, and Diabetes. Archives of Biochemistry and Biophysics, 1993, 307, 40-45.	3.0	60
99	Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Letters, 1992, 296, 211-214.	2.8	62
100	Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Analytical Biochemistry, 1988, 173, 185-189.	2.4	141
101	Glycogen synthesis from glucose and fructose in hepatocytes from diabetic rats. Archives of Biochemistry and Biophysics, 1988, 267, 437-447.	3.0	18
102	Clycogen synthase activation by sugars in isolated hepatocytes. Archives of Biochemistry and Biophysics, 1988, 264, 30-39.	3.0	29
103	Effects of glucagon and insulin on the cyclic AMP binding capacity of hepatocyte cyclic AMP-dependent protein kinase. Molecular and Cellular Biochemistry, 1987, 73, 37-44.	3.1	7
104	Activation of hepatocyte glycogen synthase by metabolic inhibitors. Archives of Biochemistry and Biophysics, 1986, 250, 469-475.	3.0	15
105	Inactivation of basal glycogen synthase by glucagon and epinephrine in hepatocytes from fed rats. FEBS Letters, 1986, 200, 47-50.	2.8	3
106	Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochemical and Biophysical Research Communications, 1986, 141, 1195-1200.	2.1	50
107	Control of glycogen synthase phosphorylation in isolated rat hepatocytes by epinephrine, vasopressin and glucagon. FEBS Journal, 1984, 142, 511-520.	0.2	54
108	Phosphorylation of glycogen synthase in isolated rabbit hepatocytes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 804, 261-263.	4.1	4

#	Article	IF	CITATIONS
109	Different effects of glucagon and epinephrine on the kinetic properties of liver glycogen synthase. FEBS Letters, 1983, 151, 76-78.	2.8	10
110	Insulin activation of basal hepatic glycogen synthase. FEBS Letters, 1981, 129, 123-126.	2.8	27
111	Insulin inactivation of rat hepatocyte cyclic AMP-dependent protein kinase. FEBS Letters, 1981, 136, 131-134.	2.8	29
112	Synthesis of glycogen from fructose in the presence of elevated levels of glycogen phosphorylase a in rat hepatocytes. Molecular and Cellular Biochemistry, 1980, 30, 33-38.	3.1	18
113	Glycogen synthase: A new activity ratio assay expressing a high sensitivity to the phosphorylation state. FEBS Letters, 1979, 106, 284-288.	2.8	168
114	The inactivation of glycogen phosphorylase is not a prerequisite for the activation of liver glycogen synthase. FEBS Letters, 1979, 99, 321-324.	2.8	35