
Javier Traba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6154582/publications.pdf Version: 2024-02-01

INVIED TOARA

#	Article	IF	CITATIONS
1	Assessing Changes in Human Natural Killer Cell Metabolism Using the Seahorse Extracellular Flux Analyzer. Methods in Molecular Biology, 2022, 2463, 165-180.	0.4	0
2	Measurement of Cytosolic Mitochondrial DNA After NLRP3 Inflammasome Activation. Methods in Molecular Biology, 2022, 2459, 117-129.	0.4	1
3	Mitochondrial function and dysfunction in innate immunity. Current Opinion in Physiology, 2022, 28, 100571.	0.9	1
4	Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance. Frontiers in Immunology, 2021, 12, 657293.	2.2	18
5	Feeding-induced resistance to acute lethal sepsis is dependent on hepatic BMAL1 and FXR signalling. Nature Communications, 2021, 12, 2745.	5.8	13
6	NOTCH-mediated exÂvivo expansion of human hematopoietic stem and progenitor cells by culture under hypoxia. Stem Cell Reports, 2021, 16, 2336-2350.	2.3	10
7	<i>Trans</i> -endocytosis of intact IL-15Rα–IL-15 complex from presenting cells into NK cells favors signaling for proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 522-531.	3.3	38
8	Analysis of Human Natural Killer Cell Metabolism. Journal of Visualized Experiments, 2020, , .	0.2	4
9	Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochemical Journal, 2019, 476, 1713-1724.	1.7	22
10	Cardiac-specific deletion of GCN5L1 restricts recovery from ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 129, 69-78.	0.9	19
11	Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4+ T Cell Activation. Journal of Immunology, 2018, 201, 3294-3306.	0.4	39
12	Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nature Immunology, 2018, 19, 871-884.	7.0	166
13	A Pilot Study To Investigate the Immune-Modulatory Effects of Fasting in Steroid-Naive Mild Asthmatics. Journal of Immunology, 2018, 201, 1382-1388.	0.4	24
14	The role of caloric load and mitochondrial homeostasis in the regulation of the NLRP3 inflammasome. Cellular and Molecular Life Sciences, 2017, 74, 1777-1791.	2.4	28
15	ATP-degrading ENPP1 is required for survival (or persistence) of long-lived plasma cells. Scientific Reports, 2017, 7, 17867.	1.6	23
16	Prolonged fasting suppresses mitochondrial NLRP3 inflammasome assembly and activation via SIRT3-mediated activation of superoxide dismutase 2. Journal of Biological Chemistry, 2017, 292, 12153-12164.	1.6	107
17	Glutamate excitotoxicity and Ca 2+ -regulation of respiration: Role of the Ca 2+ activated mitochondrial transporters (CaMCs). Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1158-1166.	0.5	77
18	An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes. Journal of Visualized Experiments, 2016, , .	0.2	31

JAVIER TRABA

#	Article	IF	CITATIONS
19	Isolating Brain Mitochondria by Differential Centrifugation. Bio-protocol, 2016, 6, .	0.2	3
20	Isolating Liver Mitochondria by Differential Centrifugation. Bio-protocol, 2016, 6, .	0.2	0
21	Mitochondrial ATP-Mg/Pi Carrier SCaMC-3/Slc25a23 Counteracts PARP-1-Dependent Fall in Mitochondrial ATP Caused by Excitotoxic Insults in Neurons. Journal of Neuroscience, 2015, 35, 3566-3581.	1.7	50
22	Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. Journal of Clinical Investigation, 2015, 125, 4592-4600.	3.9	135
23	Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 525-534.	1.2	56
24	Silencing of the Charcot–Marie–Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. Neurobiology of Disease, 2013, 55, 140-151.	2.1	75
25	Glucagon Regulation of Oxidative Phosphorylation Requires an Increase in Matrix Adenine Nucleotide Content through Ca2+ Activation of the Mitochondrial ATP-Mg/Pi Carrier SCaMC-3. Journal of Biological Chemistry, 2013, 288, 7791-7802.	1.6	46
26	SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca2+ buffering. Cell Death and Differentiation, 2012, 19, 650-660.	5.0	96
27	Role of the Ca2+ uniporter and the mitochondrial Ca2+-activated transporters of aspartate/glutamate (aralar/AGC1) and ATP-Mg/Pi (SCaMC-3) in agonist-stimulated respiration of intact cerebral cortex neurons. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, S80-S81.	0.5	Ο
28	SCaMC-1Like a Member of the Mitochondrial Carrier (MC) Family Preferentially Expressed in Testis and Localized in Mitochondria and Chromatoid Body. PLoS ONE, 2012, 7, e40470.	1.1	15
29	Adenine nucleotide transporters in organelles: novel genes and functions. Cellular and Molecular Life Sciences, 2011, 68, 1183-1206.	2.4	36
30	Characterization of SCaMC-3-like/slc25a41, a novel calcium-independent mitochondrial ATP-Mg/Pi carrier. Biochemical Journal, 2009, 418, 125-133.	1.7	51
31	Transport of adenine nucleotides in the mitochondria of Saccharomyces cerevisiae: Interactions between the ADP/ATP carriers and the ATP-Mg/Pi carrier. Mitochondrion, 2009, 9, 79-85.	1.6	17
32	Yeast mitochondria import ATP through the calciumâ€dependent ATPâ€Mg/Pi carrier Sal1p, and are ATP consumers during aerobic growth in glucose. Molecular Microbiology, 2008, 69, 570-585.	1.2	59
33	The calcium-dependent ATP-Mg/Pi mitochondrial carrier is a target of glucose-induced calcium signalling in Saccharomyces cerevisiae. Biochemical Journal, 2005, 392, 537-544.	1.7	51