
Wentao Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/615426/publications.pdf Version: 2024-02-01

21

#	Article	IF	CITATIONS
1	Excellent Electrolyte Wettability and High Energy Density of B ₂ S as a Two-Dimensional Dirac Anode for Non-Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28830-28840.	8.0	58
2	Optical characteristics and energy transfer between Eu3+ and Dy3+ in Na2CaSiO4:Dy3+, Eu3+ white-emitting phosphor. Journal of Alloys and Compounds, 2021, 873, 159803.	5.5	46
3	Enhanced red emission of NaSrVO4:Eu3+ phosphor via Bi3+co-doping for the application to white LEDs. Ceramics International, 2017, 43, 830-834.	4.8	44
4	The effect of Sm3+ co-doping on the luminescence properties of Ca2·85Li0·15(PO4)1·85(SO4)0.15: Dy3+ white-emitting phosphors. Journal of Alloys and Compounds, 2020, 817, 152761.	5.5	43
5	Synthesis and photoluminescence properties of Sr3(PO4)2:Re3+, Li+ (Re = Eu, Sm) red phosphors for white light-emitting diodes. Ceramics International, 2017, 43, 11244-11249.	4.8	40
6	Effects of Gd3+ codoping on the enhancement of the luminescent properties of a NaBi(MoO4)2:Eu3+ red-emitting phosphors. Journal of Alloys and Compounds, 2019, 784, 1003-1010.	5.5	39
7	Structure and luminescence investigation of Gd3+-sensitized perovskite CaLa4Ti4O15:Eu3+: A novel red-emitting phosphor for high-performance white light-emitting diodes and plants lighting. Journal of Colloid and Interface Science, 2022, 608, 3204-3217.	9.4	37
8	Synthesis and luminescence properties of NaLa(MoO 4) 2â ^{~,} x AG x :Eu 3+ (AG = SO 4 2 â ^{~,} , BO 3 3 â ^{~,}) red phosphors for white light emitting diodes. Journal of Alloys and Compounds, 2015, 635, 16-20.	5.5	36
9	Preparation of Sr2Si5N8:Eu2+ for white light-emitting diodes by multi-step heat treatment. Journal of Alloys and Compounds, 2011, 509, 7525-7528.	5.5	34
10	Effect of M3+ (M = Bi, Al) co-doping on the luminescence enhancement of Ca2ZnSi2O7:Sm3+ orange-redâ~emitting phosphors. Ceramics International, 2021, 47, 8228-8235.	4.8	31
11	Enhancement of NaSrVO4:Dy3+-white-phosphor photoluminescence via La3+ co-doping. Ceramics International, 2019, 45, 22547-22552.	4.8	29
12	Effect of replacement of Ca by Ln (Ln=Y, Gd) on the structural and luminescence properties of CaWO4:Eu3+ red phosphors prepared via co-precipitation. Materials Research Bulletin, 2012, 47, 3479-3483.	5.2	28
13	Effect of charge compensators A+ (A = Li, Na and K) on luminescence enhancement of Ca3Sr3(PO4)4:Sm3+ orange-red phosphors. Ceramics International, 2018, 44, 20028-20033.	4.8	25
14	Sol-gel-nitridation preparation and photoluminescence properties of Dy 3+ -doped M 2 Si 5 N 8 (M=Ca,) Tj ETQq() 0.0 rgBT 4.8	/Oyerlock 10
15	Sol–gel assisted synthesis and photoluminescence property of Sr2Si5N8:Eu2+, Dy3+ red phosphor for white light emitting diodes. Journal of Alloys and Compounds, 2016, 667, 341-345.	5.5	22
16	Synthesis and photoluminescence characteristics of Sm ³ ⁺ â€doped Bi ₄ Si ₃ O ₁₂ redâ€emitting phosphor. Luminescence, 2017, 32, 93-99.	2.9	22
17	Synthesis and photoluminescence enhancement of Ca3Sr3(VO4)4:Eu3+ red phosphors by Sm3+ doping for white LEDs. Journal of Materials Science: Materials in Electronics, 2017, 28, 18686-18696.	2.2	21

	Synthesis and luminescence properties of single omponent
18	Ca ₅ (<scp>PO</scp> ₄) ₃ F:Dy ³⁺

Ca₅(<scp>PO</scp>₄)₃F:Dy³⁺, Eu³⁺ whiteâ€emitting phosphors. Journal of the American Ceramic Society, 2018, 101, 4582-4590. 3.8

WENTAO ZHANG

#	Article	IF	CITATIONS
19	Ca19Zn2(PO4)14:Dy3+, M+ (M = Li, Na, K) white-emitting phosphors: Charge compensation effect of M+ on the photoluminescence enhancement. Ceramics International, 2021, 47, 14260-14269.	4.8	21
20	Charge compensation effects of alkali metal ions M+ (Li+, Na+, K+) on luminescence enhancement in red-emitting Ca3Si2O7:Eu3+ phosphors. Journal of Alloys and Compounds, 2022, 893, 162265.	5.5	21
21	Warm white emission property of Ca2Sr(PO4)2:Dy3+ phosphors with red compensation by Eu3+ co-doping. Ceramics International, 2018, 44, 2563-2567.	4.8	20
22	Two-Dimensional Boron-Rich Monolayer B _{<i>x</i>} N as High Capacity for Lithium-Ion Batteries: A First-Principles Study. ACS Applied Materials & Interfaces, 2021, 13, 41169-41181.	8.0	20
23	First-Principles Study on the Mechanism of Hydrogen Decomposition and Spillover on Borophene. Journal of Physical Chemistry C, 2017, 121, 17314-17320.	3.1	19
24	Effect of A+ (A = Li, Na and K) co-doping on enhancing the luminescence of Ca5(PO4)2SiO4:Eu3+ red-emitting phosphors as charge compensator. Ceramics International, 2021, 47, 3540-3547.	4.8	19
25	Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathodes by cerium doping and graphene coating. Ceramics International, 2019, 45, 23089-23096.	4.8	18
26	Visible-light driven photocatalytic performance of eco-friendly cobalt-doped ZnO nanoarrays: Influence of morphology, cobalt doping, and photocatalytic efficiency. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121103.	3.9	18
27	Red-emitting enhancement of Bi 4 Si 3 O 12 :Sm 3+ phosphor by Pr 3+ co-doping for White LEDs application. Ceramics International, 2017, 43, 9158-9163.	4.8	17
28	Synthesis and photoluminescence enhancement of Ca3Sr3(VO4)4:Eu3+ red phosphors by co-doping with La3+. Ceramics International, 2018, 44, 6192-6200.	4.8	17
29	Electrical properties of graphene nanoplatelets/ultra-high molecular weight polyethylene composites. Journal of Materials Science: Materials in Electronics, 2018, 29, 91-96.	2.2	17
30	Synthesis and luminescence properties of Eu3+ co-doped NaBi(MoO4)2:Dy3+ phosphors for white light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 658-666.	2.2	17
31	Effect of MoO42â^' partial substitution with BO33â^' and PO43â^' on luminescence enhancement of Y2(MoO4)3:Sm3+ orange-red phosphors. Ceramics International, 2019, 45, 23592-23599.	4.8	16
32	Effect of Partial Ca ²⁺ Substitution with Ln ³⁺ (Ln = Y, La) on Luminescence Enhancement of Ca _{18.62} Zn ₂ (PO ₄) ₁₄ :0.38Dy ³⁺ White-Emitting Phosphor for White Light-Emitting Diodes. ACS Applied Electronic Materials, 2021, 3,	4.3	16
33	4472-4483. Effect of partial substituting Y3+ with Ln3+ (LnÂ=ÂLa, Gd) on photoluminescence enhancement in high-performance Na5Y(MoO4)4:Dy3+ white-emitting phosphors. Journal of Alloys and Compounds, 2022, 900, 163411.	5.5	16
34	Effect of replacement of Ca by Zn on the structure and optical property of CaTiO ₃ :Eu ³⁺ red phosphor prepared by solâ€gel method. Luminescence, 2015, 30, 533-537.	2.9	15
35	Synthesis of Dy3+ co-doped Bi4Si3O12:Sm3+ phosphors with enhanced red-emitting properties. Ceramics International, 2017, 43, 15946-15951.	4.8	15
36	Synthesis and luminescence properties of Eu3+ codoped Ca0.7Y0.3Ti0.7Al0.3O3:Dy3+ white-emitting phosphor through sol-gel method. Powder Technology, 2019, 356, 661-670.	4.2	15

WENTAO ZHANG

#	Article	IF	CITATIONS
37	Photoluminescence enhancement in a Na5Y(MoO4)4:Dy3+ white-emitting phosphor by partial replacement of MoO42â^' with WO42â^' or VO43â^'. Ceramics International, 2021, 47, 12028-12037.	4.8	15
38	Luminescence enhancement of (Ca1â^'xMx)TiO3:Dy3+ phosphors through partial M (Mg2+/Zn2+) substitution for white-light-emitting diodes. Ceramics International, 2018, 44, 14774-14780.	4.8	14
39	Photoluminescence enhancement of Ca3Sr3(VO4)4:Eu3+,Al3+ red-emitting phosphors by charge compensation. Optics and Laser Technology, 2019, 118, 20-27.	4.6	14
40	Enhancing the photoluminescence performance of Ca5(PO4)2SiO4:Re3+ (Re = Eu, Sm) phosphors with A3+ (A = La, Bi) codoping and white light-emitting diode application. Ceramics International, 2022, 48, 13080-13089.	4.8	14
41	Shape-controlled porous carbon from calcium citrate precursor and their intriguing application in lithium-ion batteries. Ionics, 2017, 23, 2301-2310.	2.4	12
42	Effects of charge compensator Li+ co-doping on the structure and luminescence properties of Cd2V2O7:Eu3+ red phosphors. Ceramics International, 2018, 44, 9534-9539.	4.8	12
43	Powder synthesis and white light-emitting properties of Eu3+ co-doped K2CaP2O7:Dy3+ phosphors with energy transfer between Dy3+ and Eu3+. Advanced Powder Technology, 2021, 32, 2806-2815.	4.1	11
44	Color-tunable luminescence performance of single-component Na5Y(MoO4)4:Dy3+, Tm3+ white-emitting phosphor for white light-emitting diodes. Ceramics International, 2022, 48, 22869-22876.	4.8	11
45	Warm-white luminescence of Dy3+ and Sm3+ co-doped NaSrPO4 phosphors through energy transfer between rare earth ions. Journal of Materials Science: Materials in Electronics, 2021, 32, 16648-16661.	2.2	10
46	Preparation and electrochemical properties of Li4Ti5O12/Si3N4 composites as anode materials for high-performance lithium-ion batteries. Ceramics International, 2022, 48, 1006-1012.	4.8	10
47	Luminescence enhancement of Cd2V2O7:Re3+ (Re = Pr, Sm) red phosphors through Li+ ions charge compensation. Ceramics International, 2018, 44, 5420-5425.	4.8	9
48	Synthesis and luminescence properties of orange–red-emitting Ca9La(VO4)7:Sm3+ phosphors co-doped with alkali metal ions. Journal of Materials Science: Materials in Electronics, 2019, 30, 9184-9193.	2.2	9
49	In Situ Synthesis of ZnO/Porous Carbon Microspheres and Their High Performance for Lithium″on Batteries. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800719.	1.8	9
50	Synthesis and luminescence enhancement of Eu3+/Sm3+ co-doped Ca9Bi(VO4)7 phosphor for white-light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 3045-3054.	2.2	9
51	Photoluminescence enhancement of orange-emitting Ca ₅ (PO ₄) ₂ SiO ₄ :Sm ³⁺ phosphor through charge compensation of A ⁺ (Li ⁺ , Na ⁺ and K ⁺) ions for white light-emitting diodes. Dalton Transactions. 2022. 51. 8874-8884.	3.3	9
52	Luminescence properties of Dy3+, Eu3+ co-doped Ca7Si2P2O16 single host phosphor. Integrated Ferroelectrics, 2017, 179, 1-9.	0.7	8
53	Enhancement of the luminescence properties of Sr ₃ (PO ₄) ₂ :Dy ³⁺ ,Li ⁺ whiteâ€lightâ€emitting phosphors by charge compensator Li ⁺ coâ€doping. Luminescence, 2017, 32, 1593-1596.	2.9	8
54	Influence of Al3+/P5+ ions substitution on the structure and luminescence properties of Sr2SiO4:Eu2+ phosphors for white light emitting diodes. Ceramics International, 2017, 43, 2824-2828.	4.8	8

WENTAO ZHANG

#	Article	IF	CITATIONS
55	Effect of Y3+-O2- partial substitution with Ca2+-F- on the luminescence enhancement of Y2Mo3O12:Sm3+ red-emitting phosphors. Ceramics International, 2021, 47, 28942-28950.	4.8	8
56	Luminescence enhancement of (Sr _{1–<i>x</i>} M _{<i>x</i>}) ₂ SiO ₄ :Eu ² ^{+phosphors with M (Ca²⁺/Zn²⁺) partial substitution for white lightâ€emitting diodes. Luminescence, 2017, 32, 119-124.}	supz 2.9	7
57	Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries. Nanotechnology, 2020, 31, 205402.	2.6	7
58	White emission enhancement of Ca5(PO4)3Cl:Dy3+ phosphor with Li+/Eu3+ co-doping for white light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2018, 29, 8224-8233.	2.2	6
59	Synthesis and photoluminescence enhancement of Ca9La(VO4)7:Eu3+ red phosphors by Mg2+ co-doping for white LEDs. Journal of Materials Science: Materials in Electronics, 2018, 29, 15052-15059.	2.2	6
60	Preparation and luminescent properties of CaCO ₃ :Eu ³⁺ hollow sphere by co-precipitation method. Integrated Ferroelectrics, 2019, 200, 16-25.	0.7	6
61	Luminescence enhancement of single-component Ca19Zn2(PO4)14:Dy3+ white-emitting phosphor powders through partial substitution of PO43â^' with SiO44â^' and BO33 Ceramics International, 2022, 48, 17053-17064.	4.8	6
62	Preparation of Mg(OH) ₂ Nanosheets and Self-Assembly of Its Flower-Like Nanostructure via Precipitation Method for Heat-Resistance Application. Integrated Ferroelectrics, 2015, 163, 148-154.	0.7	5
63	Synthesis and luminescence properties of Sr2â^'xY x Si5â^'xAl x N8:Eu2+ red phosphor for white light-emitting diodes. Journal of Materials Science, 2018, 53, 10240-10248.	3.7	5
64	Luminescence properties of selfâ€activated Ca ₅ Mg ₃ Zn(VO ₄) ₆ and Ca ₅ Mg ₃ Zn(VO ₄) ₆ :xEu ³⁺ phosphors. Luminescence, 2021, 36, 316-325.	2.9	5
65	Synthesis and electrochemical characteristics of flower-like Ca-doped Li4Ti5O12 as anode material for lithium-ion batteries. Powder Technology, 2022, 407, 117652.	4.2	5
66	Preparation and characterization of 316L spherical powder for different uses by supersonic laminar flow atomization. Ferroelectrics, 2018, 530, 25-31.	0.6	4
67	Effect of charge compensators on the luminescence enhancement of Ca2ZnSi2O7:Sm3+ phosphors. Journal of Materials Science: Materials in Electronics, 2019, 30, 17412-17423.	2.2	4
68	Effect of Li+, La3+ co-doping on the photoluminescence enhancement of Sr3AlO4F:Sm3+ orange-red-emitting phosphor for white light-emitting diodes. Materials Today Communications, 2021, 29, 102806.	1.9	4
69	Luminescence Enhancement of ZnS:Cu Nanocrystals by Zinc Sulfide Coating with Core/Shell Structure. Integrated Ferroelectrics, 2014, 154, 110-119.	0.7	3
70	Synthesis and photoluminescence of Eu ³⁺ /Dy ³⁺ -doped CaGdAlO ₄ phosphors for white light emitting diodes. Integrated Ferroelectrics, 2017, 179, 148-158.	0.7	3
71	Synthesis and luminescence properties of Zn3B2O6:Eu3+, Li+ red-emitting phosphor for white LEDs. Ferroelectrics, 2018, 528, 114-121.	0.6	3
72	Luminescence enhancement for Y2Mo4O15:Pr3+ red-emitting phosphors by Tb3+ co-doping. Journal of Materials Science: Materials in Electronics, 2019, 30, 14589-14599.	2.2	3

Wentao Zhang

#	Article	IF	CITATIONS
73	Cu-supported nitrogen-doped carbon nanofibers with hierarchical three-dimensional net structure as binder-free anodes for enhanced lithium-ion batteries. Nanotechnology, 2020, 31, 055705.	2.6	3
74	Preparation of a Fe3O4@C magnetic materials with high adsorption capacity of methylene blue. Ferroelectrics, 2020, 566, 94-103.	0.6	3
75	Preparation of γâ€aluminum oxynitride phosphor with Eu doping by direct nitridation in ammonia and postannealing. Journal of the American Ceramic Society, 2018, 101, 3299-3308.	3.8	2
76	Photoluminescence enhancement of Ca3Sr3(PO4)4:Dy3+ white-emitting phosphors by Li+ and Na+ charge compensation. Journal of Materials Science: Materials in Electronics, 2018, 29, 19732-19738.	2.2	2
77	Preparation of nano-micron vanadium adsorbent for VO3â ^{~,} adsorption. Ferroelectrics, 2020, 563, 52-61.	0.6	2
78	Construction of MnFe2O4/Bi5O7I composite heterojunction and its visible light–driven photocatalytic degradation of RhB. Ionics, 2022, 28, 3893-3905.	2.4	2
79	Sol–gel synthesis and luminescence property of Sr ₄ Al ₂ O ₇ :Re3 ⁺ ,R ⁺ (ReÂ=ÂEu and Dy; RÂ=ÂLi, I	Na)2. T g ETQ	q111 0.784 <mark>3</mark>
80	Synthesis and photoluminescence enhancement of the LiLa(MoO ₄) ₂ :Sm ³⁺ red phosphors by coâ€doping with Bi ³⁺ . Luminescence, 2022, 37, 672-680.	2.9	1
81	Preparation of MgAl-CO ₃ -LDHs for VO ₃ ⁻ Adsorption. Integrated Ferroelectrics, 2021, 219, 307-316.	0.7	0