
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6154214/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Granular representation of OWA-based fuzzy rough sets. Fuzzy Sets and Systems, 2022, 440, 112-130.	1.6	10
2	Choquet-based fuzzy rough sets. International Journal of Approximate Reasoning, 2022, 146, 62-78.	1.9	6
3	Kitainik axioms do not characterize the class of inclusion measures based on contrapositive fuzzy implications. Fuzzy Sets and Systems, 2022, , .	1.6	1
4	Fuzzy extensions of the dominance-based rough set approach. International Journal of Approximate Reasoning, 2021, 129, 1-19.	1.9	26
5	Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets. Lecture Notes in Computer Science, 2021, , 231-246.	1.0	6
6	Average Localised Proximity: A new data descriptor with good default one-class classification performance. Pattern Recognition, 2021, 118, 107991.	5.1	9
7	Scalable Approximate FRNN-OWA Classification. IEEE Transactions on Fuzzy Systems, 2020, 28, 929-938.	6.5	11
8	fuzzy-rough-learn 0.1: A Python Library for Machine Learning with Fuzzy Rough Sets. Lecture Notes in Computer Science, 2020, , 491-499.	1.0	10
9	A Scalable Approach to Fuzzy Rough Nearest Neighbour Classification with Ordered Weighted Averaging Operators. Lecture Notes in Computer Science, 2019, , 197-209.	1.0	2
10	Weight selection strategies for ordered weighted average based fuzzy rough sets. Information Sciences, 2019, 501, 155-171.	4.0	29
11	Decision reducts and bireducts in a covering approximation space and their relationship to set definability. International Journal of Approximate Reasoning, 2019, 109, 42-54.	1.9	6
12	Rough Matroids Based on Dual Approximation Operators. Lecture Notes in Computer Science, 2019, , 118-129.	1.0	2
13	Multi-label classification using a fuzzy rough neighborhood consensus. Information Sciences, 2018, 433-434, 96-114.	4.0	40
14	A comprehensive study of fuzzy covering-based rough set models: Definitions, properties and interrelationships. Fuzzy Sets and Systems, 2018, 336, 1-26.	1.6	82
15	Dynamic affinity-based classification of multi-class imbalanced data with one-versus-one decomposition: a fuzzy rough set approach. Knowledge and Information Systems, 2018, 56, 55-84.	2.1	27
16	Fuzzy neighborhood operators based on fuzzy coverings. Fuzzy Sets and Systems, 2017, 312, 17-35.	1.6	119
17	Notes on covering-based rough sets from topological point of view: Relationships with general framework of dual approximation operators. International Journal of Approximate Reasoning, 2017, 88, 295-305.	1.9	10
18	A semantically sound approach to Pawlak rough sets and covering-based rough sets. International Journal of Approximate Reasoning, 2016, 78, 62-72.	1.9	38

#	Article	IF	CITATIONS
19	Fuzzy rough sets for self-labelling: An exploratory analysis. , 2016, , .		ο
20	Multi-instance Classification. , 2016, , 35-66.		0
21	Imbalanced Multi-instance Data. , 2016, , 191-208.		1
22	Multiple Instance Learning. , 2016, , .		41
23	Fuzzy Multi-Instance Classifiers. IEEE Transactions on Fuzzy Systems, 2016, 24, 1395-1409.	6.5	11
24	Fuzzy rough classifiers for class imbalanced multi-instance data. Pattern Recognition, 2016, 53, 36-45.	5.1	51
25	Neighborhood operators for covering-based rough sets. Information Sciences, 2016, 336, 21-44.	4.0	86
26	Evolutionary wrapper approaches for training set selection as preprocessing mechanism for support vector machines: Experimental evaluation and support vector analysis. Applied Soft Computing Journal, 2016, 38, 10-22.	4.1	38
27	A Semantical Approach to Rough Sets and Dominance-Based Rough Sets. Communications in Computer and Information Science, 2016, , 23-35.	0.4	1
28	Multiple Instance Learning. , 2016, , 17-33.		16
29	Fuzzy Rough Set Prototype Selection for Regression. , 2015, , .		0
30	Applications of Fuzzy Rough Set Theory in Machine Learning: a Survey. Fundamenta Informaticae, 2015, 142, 53-86.	0.3	38
31	New Neighborhood Based Rough Sets. Lecture Notes in Computer Science, 2015, , 191-201.	1.0	0
32	Distributed fuzzy rough prototype selection for Big Data regression. , 2015, , .		5
33	IFROWANN: Imbalanced Fuzzy-Rough Ordered Weighted Average Nearest Neighbor Classification. IEEE Transactions on Fuzzy Systems, 2015, 23, 1622-1637.	6.5	84
34	Fuzzy-Rough Hybridization. , 2015, , 425-451.		9
35	A comprehensive study of implicator–conjunctor-based and noise-tolerant fuzzy rough sets: Definitions, properties and robustness analysis. Fuzzy Sets and Systems, 2015, 275, 1-38.	1.6	70
36	Implementing algorithms of rough set theory and fuzzy rough set theory in the R package "RoughSets― Information Sciences, 2014, 287, 68-89.	4.0	129

#	Article	IF	CITATIONS
37	A multi-instance learning wrapper based on the Rocchio classifier for web index recommendation. Knowledge-Based Systems, 2014, 59, 173-181.	4.0	12
38	Partial order relation for approximation operators in covering based rough sets. Information Sciences, 2014, 284, 44-59.	4.0	45
39	Multi-adjoint fuzzy rough sets: Definition, properties and attribute selection. International Journal of Approximate Reasoning, 2014, 55, 412-426.	1.9	57
40	Duality, conjugacy and adjointness of approximation operators in covering-based rough sets. International Journal of Approximate Reasoning, 2014, 55, 469-485.	1.9	62
41	Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection. Applied Soft Computing Journal, 2014, 22, 511-517.	4.1	61
42	FRPS: A Fuzzy Rough Prototype Selection method. Pattern Recognition, 2013, 46, 2770-2782.	5.1	49
43	Using semi-structured data for assessing research paper similarity. Information Sciences, 2013, 221, 245-261.	4.0	11
44	Enhancing the trust-based recommendation process with explicit distrust. ACM Transactions on the Web, 2013, 7, 1-19.	2.0	29
45	Quality, frequency and similarity based fuzzy nearest neighbor classification. , 2013, , .		4
46	Implicator-Conjunctor Based Models of Fuzzy Rough Sets: Definitions and Properties. Lecture Notes in Computer Science, 2013, , 169-179.	1.0	6
47	OWA-FRPS: A Prototype Selection Method Based on Ordered Weighted Average Fuzzy Rough Set Theory. Lecture Notes in Computer Science, 2013, , 180-190.	1.0	13
48	Fuzzy rough positive region based nearest neighbour classification. , 2012, , .		16
49	Trust and distrust aggregation enhanced with path length incorporation. Fuzzy Sets and Systems, 2012, 202, 61-74.	1.6	31
50	Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Information Sciences, 2012, 186, 73-92.	4.0	102
51	Trust- and Distrust-Based Recommendations for Controversial Reviews. IEEE Intelligent Systems, 2011, 26, 48-55.	4.0	77
52	Trust and Recommendations. , 2011, , 645-675.		68
53	Fuzzy-rough nearest neighbour classification and prediction. Theoretical Computer Science, 2011, 412, 5871-5884.	0.5	104
54	Practical aggregation operators for gradual trust and distrust. Fuzzy Sets and Systems, 2011, 184, 126-147.	1.6	104

#	Article	IF	CITATIONS
55	Trust Networks for Recommender Systems. Atlantis Computational Intelligence Systems, 2011, , .	0.5	35
56	A Preliminary Study on the Use of Fuzzy Rough Set Based Feature Selection for Improving Evolutionary Instance Selection Algorithms. Lecture Notes in Computer Science, 2011, , 174-182.	1.0	2
57	Attribute selection with fuzzy decision reducts. Information Sciences, 2010, 180, 209-224.	4.0	206
58	Extending boolean regulatory network models with answer set programming. , 2010, , .		1
59	Fuzzy-rough instance selection. , 2010, , .		36
60	Metadata Impact on Research Paper Similarity. Lecture Notes in Computer Science, 2010, , 457-460.	1.0	4
61	Ordered Weighted Average Based Fuzzy Rough Sets. Lecture Notes in Computer Science, 2010, , 78-85.	1.0	41
62	Interval-Valued Algebras and Fuzzy Logics. Studies in Fuzziness and Soft Computing, 2010, , 57-82.	0.6	2
63	Modeling Protein Interaction Networks with Answer Set Programming. , 2009, , .		13
64	Hybrid fuzzy-rough rule induction and feature selection. , 2009, , .		30
65	Linguistic feature analysis for protein interaction extraction. BMC Bioinformatics, 2009, 10, 374.	1.2	18
66	Gradual trust and distrust in recommender systems. Fuzzy Sets and Systems, 2009, 160, 1367-1382.	1.6	167
67	Fuzzy region connection calculus: Representing vague topological information. International Journal of Approximate Reasoning, 2008, 48, 314-331.	1.9	34
68	Fuzzy region connection calculus: An interpretation based on closeness. International Journal of Approximate Reasoning, 2008, 48, 332-347.	1.9	27
69	A noise-tolerant approach to fuzzy-rough feature selection. , 2008, , .		22
70	Key figure impact in trust-enhanced recommender systems. Al Communications, 2008, 21, 127-143.	0.8	36
71	The role of syntactic features in protein interaction extraction. , 2008, , .		3
72	Feature Selection with Fuzzy Decision Reducts. , 2008, , 284-291.		30

#	Article	IF	CITATIONS
73	A New Approach to Fuzzy-Rough Nearest Neighbour Classification. Lecture Notes in Computer Science, 2008, , 310-319.	1.0	62
74	REPRESENTABILITY IN INTERVAL-VALUED FUZZY SET THEORY. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2007, 15, 345-361.	0.9	65
75	A BILATTICE-BASED FRAMEWORK FOR HANDLING GRADED TRUTH AND IMPRECISION. International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, 2007, 15, 13-41.	0.9	22
76	Uncertainty Modeling by Bilattice-Based Squares and Triangles. IEEE Transactions on Fuzzy Systems, 2007, 15, 161-175.	6.5	19
77	Fuzzy Rough Sets: The Forgotten Step. IEEE Transactions on Fuzzy Systems, 2007, 15, 121-130.	6.5	97
78	Clustering web search results using fuzzy ants. International Journal of Intelligent Systems, 2007, 22, 455-474.	3.3	13
79	One-and-only item recommendation with fuzzy logic techniques. Information Sciences, 2007, 177, 4906-4921.	4.0	76
80	Vaguely Quantified Rough Sets. Lecture Notes in Computer Science, 2007, , 87-94.	1.0	72
81	Fuzzy Spatial Relations between Vague Regions. , 2006, , .		11
82	Triangle Algebras: Towards an Axiomatization of Interval-Valued Residuated Lattices. Lecture Notes in Computer Science, 2006, , 117-126.	1.0	2
83	ON THE PROPERTIES OF A GENERALIZED CLASS OF T-NORMS IN INTERVAL-VALUED FUZZY LOGICS. New Mathematics and Natural Computation, 2006, 02, 29-41.	0.4	22
84	Bilattice-Based Squares and Triangles. Lecture Notes in Computer Science, 2005, , 563-575.	1.0	8
85	Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application. International Journal of Approximate Reasoning, 2004, 35, 55-95.	1.9	378
86	Efficient Approximate Reasoning with Positive and Negative Information. Lecture Notes in Computer Science, 2004, , 779-785.	1.0	6
87	Sinha–Dougherty approach to the fuzzification of set inclusion revisited. Fuzzy Sets and Systems, 2003, 134, 283-295.	1.6	82
88	Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge. Expert Systems, 2003, 20, 260-270.	2.9	173
89	Inclusion Measures in Intuitionistic Fuzzy Set Theory. Lecture Notes in Computer Science, 2003, , 345-356.	1.0	37
90	A Fuzzy Inference Methodology Based on the Fuzzification of Set Inclusion. Studies in Fuzziness and Soft Computing, 2003, , 71-89.	0.6	4

#	Article	IF	CITATIONS
91	Inclusion-Based Approximate Reasoning. Lecture Notes in Computer Science, 2001, , 221-230.	1.0	9
92	The Generalized Modus Ponens in a Fuzzy Set Theoretical Framework. , 2000, , 37-59.		4
93	Optimised one-class classification performance. Machine Learning, 0, , 1.	3.4	0