Wolfgang Andreas Weber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6154122/publications.pdf

Version: 2024-02-01

94 papers 4,922 citations

32 h-index 98753 67 g-index

98 all docs 98 docs citations

98 times ranked

4672 citing authors

#	Article	IF	CITATIONS
1	Imaging of cardiac fibroblast activation in a patient after acute myocardial infarction using 68Ga-FAPI-04. Journal of Nuclear Cardiology, 2022, 29, 2254-2261.	1.4	39
2	Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 517-526.	3.3	23
3	The added value of PSMA PET/MR radiomics for prostate cancer staging. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 527-538.	3.3	38
4	Response monitoring in metastatic breast cancer: a comparison of survival times between FDG-PET/CT and CE-CT. British Journal of Cancer, 2022, 126, 1271-1279.	2.9	15
5	Nuclear Molecular Imaging of Cardiac Remodeling after Myocardial Infarction. Pharmaceuticals, 2022, 15, 183.	1.7	4
6	RSV: Robotic Sonography for Thyroid Volumetry. IEEE Robotics and Automation Letters, 2022, 7, 3342-3348.	3.3	9
7	Initial evaluation of [18F]-FACBC for PET imaging of multiple myeloma. EJNMMI Research, 2022, 12, 4.	1.1	4
8	Preclinical biodistribution and dosimetry and human biodistribution comparing 18F-rhPSMA-7 and single isomer 18F-rhPSMA-7.3. EJNMMI Research, 2022, 12, 8.	1.1	4
9	Comparison of the distribution of lymph node metastases compared to healthy lymph nodes in breast cancer. Radiation Oncology, 2022, 17, 27.	1.2	0
10	Radical Prostatectomy Without Prior Biopsy Following Multiparametric Magnetic Resonance Imaging and Prostate-specific Membrane Antigen Positron Emission Tomography. European Urology, 2022, 82, 156-160.	0.9	43
11	Novel framework for treatment response evaluation using PSMA-PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP): An international multicenter study Journal of Clinical Oncology, 2022, 40, 42-42.	0.8	1
12	The value of plasma hypoxia markers for predicting imaging-based hypoxia in patients with head-and-neck cancers undergoing definitive chemoradiation. Clinical and Translational Radiation Oncology, 2022, 33, 120-127.	0.9	3
13	Temporary reactive response of axillary lymph nodes to COVID-19 vaccination on ¹⁸ F-rhPSMA-7.3 PET/CT in patients with prostate cancer. Journal of Nuclear Medicine, 2022, jnumed.121.263758.	2.8	5
14	Novel framework for treatment response evaluation using PSMA-PET/CT in patients with metastatic castration-resistant prostate cancer (RECIP 1.0): an international multicenter study. Journal of Nuclear Medicine, 2022, , jnumed.121.263072.	2.8	28
15	In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Frontiers in Cardiovascular Medicine, 2022, 9, 889963.	1.1	7
16	Toward Novel [18F]Fluorine-Labeled Radiotracers for the Imaging of α-Synuclein Fibrils. Frontiers in Aging Neuroscience, 2022, 14, 830704.	1.7	5
17	The sodium iodide symporter (NIS) as theranostic gene: its emerging role in new imaging modalities and non-viral gene therapy. EJNMMI Research, 2022, 12, 25.	1.1	10
18	Positive predictive value and correct detection rate of ¹⁸ F-rhPSMA-7 PET in biochemically recurrent prostate cancer validated by composite reference standard. Journal of Nuclear Medicine, 2021, 62, jnumed.120.255661.	2.8	5

#	Article	IF	CITATIONS
19	Almost 10Âyears of PET/MR attenuation correction: the effect on lesion quantification with PSMA: clinical evaluation on 200 prostate cancer patients. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 543-553.	3.3	8
20	Effect of Tumor Perfusion and Receptor Density on Tumor Control Probability in ¹⁷⁷ Lu-DOTATATE Therapy: An In Silico Analysis for Standard and Optimized Treatment. Journal of Nuclear Medicine, 2021, 62, 92-98.	2.8	13
21	Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. European Urology, 2021, 79, 343-350.	0.9	128
22	Comparative Preclinical Biodistribution, Dosimetry, and Endoradiotherapy in Metastatic Castration-Resistant Prostate Cancer Using ¹⁹ F/ ¹⁷⁷ Lu-rhPSMA-7.3 and ¹⁷⁷ Lu-PSMA &T. Journal of Nuclear Medicine, 2021, 62, 1106-1111.	2.8	16
23	Lymphocyte Infiltration Determines the Hypoxia-Dependent Response to Definitive Chemoradiation in Head-and-Neck Cancer: Results from a Prospective Imaging Trial. Journal of Nuclear Medicine, 2021, 62, 471-478.	2.8	14
24	Automated synthesis of [18F]Ga-rhPSMA-7/-7.3: results, quality control and experience from more than 200 routine productions. EJNMMI Radiopharmacy and Chemistry, 2021, 6, 4.	1.8	16
25	Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using (⁸⁹ Zr)-DFO- Galectin3-F(ab') ₂ mAb. Theranostics, 2021, 11, 1864-1876.	4.6	16
26	Reply: Radioguided Surgery. Journal of Nuclear Medicine, 2021, 62, 592-592.	2.8	O
27	Regional Hyperthermia Enhances Mesenchymal Stem Cell Recruitment to Tumor Stroma: Implications for Mesenchymal Stem Cell-Based Tumor Therapy. Molecular Therapy, 2021, 29, 788-803.	3.7	16
28	Performance of [68Ga]Ga-PSMA-11 PET/CT in patients with recurrent prostate cancer after prostatectomyâ€"a multi-centre evaluation of 2533 patients. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 2925-2934.	3.3	43
29	Detection Efficacy of ¹⁸ Fâ€rhPSMAâ€7.3 PET/CT and Impact on Management in Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy and Before Potential Salvage Treatment. Journal of Nuclear Medicine, 2021, 62, 1719-1726.	2.8	14
30	The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Molecular Cell, 2021, 81, 1170-1186.e10.	4.5	39
31	Effective rational humanization of a PASylated anti-galectin-3 Fab for the sensitive PET imaging of thyroid cancer in vivo. Scientific Reports, 2021, 11, 7358.	1.6	5
32	Interim PSMA PET/CT for response evaluation during LuPSMA treatment in mCRPC (INTERIM PET): An explorative, multicenter study Journal of Clinical Oncology, 2021, 39, 5066-5066.	0.8	2
33	Value of PET imaging for radiation therapy. Nuklearmedizin - NuclearMedicine, 2021, 60, 326-343.	0.3	2
34	Value of PET imaging for radiation therapy. Strahlentherapie Und Onkologie, 2021, 197, 1-23.	1.0	16
35	Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?—An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer. Cancers, 2021, 13, 3429.	1.7	8
36	The Influence of Specific Activity on the Biodistribution of 18F-rhPSMA-7.3: A Retrospective Analysis of Clinical Positron Emission Tomography Data. Journal of Nuclear Medicine, 2021, , jnumed.121.262471.	2.8	5

#	Article	IF	Citations
37	Investigation of spleen CXCR4 expression by [68Ga]Pentixafor PET in a cohort of 145 solid cancer patients. EJNMMI Research, $2021,11,77.$	1.1	16
38	PSMA-ligand uptake can serve as a novel biomarker in primary prostate cancer to predict outcome after radical prostatectomy. EJNMMI Research, 2021, 11, 76.	1.1	12
39	Synthesis and Preclinical Evaluation of a ⁶⁸ Ga-Labeled Adnectin, ⁶⁸ Ga-BMS-986192, as a PET Agent for Imaging PD-L1 Expression. Journal of Nuclear Medicine, 2021, 62, 1228-1234.	2.8	21
40	Mars Shot for Nuclear Medicine, Molecular Imaging, and Molecularly Targeted Radiopharmaceutical Therapy. Journal of Nuclear Medicine, 2021, 62, 6-14.	2.8	13
41	Selective sodium iodide symporter (NIS) gene therapy of glioblastoma mediated by EGFR-targeted lipopolyplexes. Molecular Therapy - Oncolytics, 2021, 23, 432-446.	2.0	11
42	PSMA-PET/MRI-Based Focal Dose Escalation in Patients with Primary Prostate Cancer Treated with Stereotactic Body Radiation Therapy (HypoFocal-SBRT): Study Protocol of a Randomized, Multicentric Phase III Trial. Cancers, 2021, 13, 5795.	1.7	19
43	Irradiation of regional lymph node areas in breast cancer – Dose evaluation according to the Z0011, AMAROS, EORTC 10981-22023 and MA-20 field design. Radiotherapy and Oncology, 2020, 142, 195-201.	0.3	37
44	Matched-Pair Comparison of ⁶⁸ Ga-PSMA-11 PET/CT and ¹⁸ F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence After Radical Prostatectomy. Journal of Nuclear Medicine, 2020, 61, 51-57.	2.8	161
45	Can the Injected Dose Be Reduced in 68Ga-PSMA-11 PET/CT While Maintaining High Image Quality for Lesion Detection?. Journal of Nuclear Medicine, 2020, 61, 189-193.	2.8	19
46	The AQARA Principle: Proposing Standard Requirements for Radionuclide-Based Images in Medical Journals. Journal of Nuclear Medicine, 2020, 61, 1-2.	2.8	38
47	Histologically Confirmed Diagnostic Efficacy of ¹⁸ F-rhPSMA-7 PET for N-Staging of Patients with Primary High-Risk Prostate Cancer. Journal of Nuclear Medicine, 2020, 61, 710-715.	2.8	34
48	Room Temperature Al ¹⁸ F Labeling of 2â€Aminomethylpiperidineâ€Based Chelators for PET Imaging. ChemMedChem, 2020, 15, 284-292.	1.6	13
49	Quantitative and Qualitative Analyses of Biodistribution and PET Image Quality of a Novel Radiohybrid PSMA, ¹⁸ F-rhPSMA-7, in Patients with Prostate Cancer. Journal of Nuclear Medicine, 2020, 61, 702-709.	2.8	38
50	¹⁸ F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. Journal of Nuclear Medicine, 2020, 61, 696-701.	2.8	67
51	Correlative analyses between tissue-based hypoxia biomarkers and hypoxia PET imaging in head and neck cancer patients during radiochemotherapy—results from a prospective trial. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1046-1055.	3.3	32
52	Integration of PET-imaging into radiotherapy treatment planning for low-grade meningiomas improves outcome. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 1391-1399.	3.3	15
53	Hypoxia dynamics on FMISO-PET in combination with PD-1/PD-L1 expression has an impact on the clinical outcome of patients with Head-and-neck Squamous Cell Carcinoma undergoing Chemoradiation. Theranostics, 2020, 10, 9395-9406.	4.6	16
54	Efficacy and Safety of 177Lu-labeled Prostate-specific Membrane Antigen Radionuclide Treatment in Patients with Diffuse Bone Marrow Involvement: A Multicenter Retrospective Study. European Urology, 2020, 78, 148-154.	0.9	39

#	Article	IF	CITATIONS
55	Development of a Chimeric Antigen-Binding Fragment Directed Against Human Galectin-3 and Validation as an Immuno-Positron Emission Tomography Tracer for the Sensitive <i>In Vivo</i> In Junaging of Thyroid Cancer. Thyroid, 2020, 30, 1314-1326.	2.4	11
56	Early Prostate-Specific Antigen Changes and Clinical Outcome After ¹⁷⁷ Lu-PSMA Radionuclide Treatment in Patients with Metastatic Castration-Resistant Prostate Cancer. Journal of Nuclear Medicine, 2020, 61, 1476-1483.	2.8	34
57	Advancements in PARP1 Targeted Nuclear Imaging and Theranostic Probes. Journal of Clinical Medicine, 2020, 9, 2130.	1.0	24
58	Development of a high affinity Anticalin $\sup \hat{A}^{\otimes}$ (sup) directed against human CD98hc for theranostic applications. Theranostics, 2020, 10, 2172-2187.	4.6	22
59	Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter (<i>NIS</i>) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Theranostics, 2020, 10, 4490-4506.	4.6	19
60	CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. Journal of Nuclear Medicine, 2020, 61, 1765-1771.	2.8	34
61	Clinical PET/MR. Recent Results in Cancer Research, 2020, 216, 747-764.	1.8	16
62	Pre-test 68Ga-PSMA-ligand PET/CT positivity in early biochemical recurrent prostate cancer after radical prostatectomyâ€"validation of a prediction model. EJNMMI Research, 2020, 10, 6.	1.1	5
63	The Future of Nuclear Medicine, Molecular Imaging, and Theranostics. Journal of Nuclear Medicine, 2020, 61, 263S-272S.	2.8	67
64	Detection Efficacy of ¹⁸ F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. Journal of Nuclear Medicine, 2019, 60, 362-368.	2.8	238
65	Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a ⁶⁸ Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. Journal of Nuclear Medicine, 2019, 60, 1743-1749.	2.8	159
66	Have we achieved adequate recommendations for target volume definitions in anal cancer? A PET imaging based patterns of failure analysis in the context of established contouring guidelines. BMC Cancer, 2019, 19, 742.	1.1	22
67	Exceptional 4-year response to 177Lu-PSMA radioligand therapy in metastatic castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2212-2213.	3.3	5
68	Targeting mannose receptor expression on macrophages in atherosclerotic plaques of apolipoprotein E-knockout mice using 68Ga-NOTA-anti-MMR nanobody: non-invasive imaging of atherosclerotic plaques. EJNMMI Research, 2019, 9, 5.	1.1	46
69	Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. Journal of Nuclear Medicine, 2019, 60, 13S-19S.	2.8	172
70	qPSMA: Semiautomatic Software for Whole-Body Tumor Burden Assessment in Prostate Cancer Using ⁶⁸ Ga-PSMA11 PET/CT. Journal of Nuclear Medicine, 2019, 60, 1277-1283.	2.8	82
71	Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. European Urology, 2019, 76, 517-523.	0.9	81
72	Neuroimaging for Radiation Therapy of Brain Tumors. Topics in Magnetic Resonance Imaging, 2019, 28, 63-71.	0.7	9

#	Article	IF	CITATIONS
73	Diffusion-weighted MRI and ADC versus FET-PET and GdT1w-MRI for gross tumor volume (GTV) delineation in re-irradiation of recurrent glioblastoma. Radiotherapy and Oncology, 2019, 130, 121-131.	0.3	24
74	Pitfalls in Ga-68-PSMA-PET/CT: incidental finding of parathyroid adenoma. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 1041-1041.	3.3	9
75	Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with 177Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. European Urology, 2019, 75, 920-926.	0.9	206
76	FDG/PET-CT–Based Lymph Node Atlas in Breast Cancer Patients. International Journal of Radiation Oncology Biology Physics, 2019, 103, 574-582.	0.4	50
77	Early Experience of Rechallenge ¹⁷⁷ Lu-PSMA Radioligand Therapy After an Initial Good Response in Patients with Advanced Prostate Cancer. Journal of Nuclear Medicine, 2019, 60, 644-648.	2.8	29
78	Evaluation of SUV normalized by lean body mass (SUL) in 68Ga-PSMA11 PET/CT: a bi-centric analysis. EJNMMI Research, 2019, 9, 103.	1.1	11
79	CXCR4-Targeted Positron Emission Tomography Imaging of Central Nervous System B-Cell Lymphoma. Blood, 2019, 134, 2900-2900.	0.6	1
80	Somatostatin Receptor Imaging of Neuroendocrine Tumors: From Agonists to Antagonists. Journal of Nuclear Medicine, 2018, 59, 907-908.	2.8	20
81	Consensus on molecular imaging and theranostics in prostate cancer. Lancet Oncology, The, 2018, 19, e696-e708.	5.1	90
82	Effect of radiochemotherapy on T2* MRI in HNSCC and its relation to FMISO PET derived hypoxia and FDG PET. Radiation Oncology, 2018, 13, 159.	1.2	26
83	Positronâ€emission tomography imaging in urological oncology: Current aspects and developments. International Journal of Urology, 2018, 25, 912-921.	0.5	10
84	Comparison of Somatostatin Receptor Agonist and Antagonist for Peptide Receptor Radionuclide Therapy: A Pilot Study. Journal of Nuclear Medicine, 2014, 55, 1248-1252.	2.8	197
85	Immune response after striatal engraftment of fetal neuronal cells in patients with Huntington's disease: Consequences for cerebral transplantation programs. Clinical and Experimental Neuroimmunology, 2011, 2, 25-32.	0.5	17
86	An Interindividual Comparison of O-(2- [18F]Fluoroethyl)-L-Tyrosine (FET)– and L-[Methyl-11C]Methionine (MET)–PET in Patients With Brain Gliomas and Metastases. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1049-1058.	0.4	222
87	Imaging of esophageal and gastric cancer. Seminars in Oncology, 2004, 31, 530-541.	0.8	84
88	FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. European Journal of Nuclear Medicine and Molecular Imaging, 2003, 30, 288-295.	3.3	290
89	O-(2-[18F]Fluoroethyl)-L-tyrosine (FET): a tracer for differentiation of tumour from inflammation in murine lymph nodes. European Journal of Nuclear Medicine and Molecular Imaging, 2002, 29, 1039-1046.	3.3	131
90	Prediction of Response to Preoperative Chemotherapy in Adenocarcinomas of the Esophagogastric Junction by Metabolic Imaging. Journal of Clinical Oncology, 2001, 19, 3058-3065.	0.8	682

#	Article	IF	CITATIONS
91	O -(2-[18 F]Fluoroethyl)- l-tyrosine and l-[methyl- 11 C]methionine uptake in brain tumours: initial results of a comparative study. European Journal of Nuclear Medicine and Molecular Imaging, 2000, 27, 542-549.	3.3	353
92	Preoperative Evaluation of Pancreatic Masses with Positron Emission Tomography Using 18F-fluorodeoxyglucose: Diagnostic Limitations. World Journal of Surgery, 2000, 24, 1121-1129.	0.8	102
93	Whole-body positron emission tomography in clinical oncology: Comparison between attenuation-corrected and uncorrected images. European Journal of Nuclear Medicine and Molecular Imaging, 1997, 24, 1091-1098.	2.2	80
94	Relationship between production of epidermal growth factor receptors, gene amplification, and chromosome 7 translocation in variant A431 cells. Somatic Cell and Molecular Genetics, $1985, 11, 309-318$.	0.7	33