Oliver Soehnlein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6153953/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties and fate of human mesenchymal stem cells upon miRNA let-7f-promoted recruitment to atherosclerotic plaques. Cardiovascular Research, 2023, 119, 155-166.	1.8	2
2	Extracellular histones are a target in myocardial ischaemia–reperfusion injury. Cardiovascular Research, 2022, 118, 1115-1125.	1.8	19
3	Neutrophil extracellular traps: from physiology to pathology. Cardiovascular Research, 2022, 118, 2737-2753.	1.8	96
4	Behavioural immune landscapes of inflammation. Nature, 2022, 601, 415-421.	13.7	53
5	Endothelial Retargeting of AAV9 In Vivo. Advanced Science, 2022, 9, e2103867.	5.6	17
6	Neutrophils in chronic inflammatory diseases. Cellular and Molecular Immunology, 2022, 19, 177-191.	4.8	173
7	Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. Journal of Clinical Investigation, 2022, 132, .	3.9	30
8	Endothelial ACKR3 drives atherosclerosis by promoting immune cell adhesion to vascular endothelium. Basic Research in Cardiology, 2022, 117, .	2.5	10
9	Therapeutic ACPA inhibits NET formation: a potential therapy for neutrophil-mediated inflammatory diseases. Cellular and Molecular Immunology, 2021, 18, 1528-1544.	4.8	90
10	Endotoxinemia Accelerates Atherosclerosis Through Electrostatic Charge–Mediated Monocyte Adhesion. Circulation, 2021, 143, 254-266.	1.6	266
11	Arterial Delivery of VEGF-C Stabilizes Atherosclerotic Lesions. Circulation Research, 2021, 128, 284-286.	2.0	12
12	Structure-based peptide design targeting intrinsically disordered proteins: Novel histone H4 and H2A peptidic inhibitors. Computational and Structural Biotechnology Journal, 2021, 19, 934-948.	1.9	21
13	The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature, 2021, 592, 296-301.	13.7	236
14	Synthesis and evaluation of novel cyclopentane urea FPR2 agonists and their potential application in the treatment of cardiovascular inflammation. European Journal of Medicinal Chemistry, 2021, 214, 113194.	2.6	10
15	Platelets orchestrate the resolution of pulmonary inflammation in mice by T reg cell repositioning and macrophage education. Journal of Experimental Medicine, 2021, 218, .	4.2	30
16	Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nature Reviews Drug Discovery, 2021, 20, 589-610.	21.5	459
17	TIMP1 Triggers Neutrophil Extracellular Trap Formation in Pancreatic Cancer. Cancer Research, 2021, 81, 3568-3579.	0.4	44
18	Monocyte-Chemoattractant Protein-1 Levels in Human Atherosclerotic Lesions Associate With Plaque Vulnerability. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 2038-2048.	1.1	48

#	Article	IF	CITATIONS
19	Neutrophil life in three acts: a production by different stage directors. Nature Immunology, 2021, 22, 1072-1074.	7.0	5
20	Contemporary Lifestyle and Neutrophil Extracellular Traps: An Emerging Link in Atherosclerosis Disease. Cells, 2021, 10, 1985.	1.8	9
21	Apolipoprotein Mimetic Peptide Inhibits Neutrophil-Driven Inflammatory Damage via Membrane Remodeling and Suppression of Cell Lysis. ACS Nano, 2021, 15, 15930-15939.	7.3	7
22	Hepatocyte-specific glucose-6-phosphatase deficiency disturbs platelet aggregation and decreases blood monocytes upon fasting-induced hypoglycemia. Molecular Metabolism, 2021, 53, 101265.	3.0	3
23	Design, synthesis, and biological evaluation of novel pyrrolidinone small-molecule Formyl peptide receptor 2 agonists. European Journal of Medicinal Chemistry, 2021, 226, 113805.	2.6	3
24	Long Noncoding RNA <i>MIAT</i> Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation, 2021, 144, 1567-1583.	1.6	82
25	The Atlas of Inflammation Resolution (AIR). Molecular Aspects of Medicine, 2020, 74, 100894.	2.7	110
26	Co-option of Neutrophil Fates by Tissue Environments. Cell, 2020, 183, 1282-1297.e18.	13.5	246
27	Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 2020, 127, 402-426.	2.0	207
28	Histone Deacetylase 9 Activates IKK to Regulate Atherosclerotic Plaque Vulnerability. Circulation Research, 2020, 127, 811-823.	2.0	64
29	Chemokines and galectins form heterodimers to modulate inflammation. EMBO Reports, 2020, 21, e47852.	2.0	63
30	Neutrophils as regulators of cardiovascular inflammation. Nature Reviews Cardiology, 2020, 17, 327-340.	6.1	265
31	Neutrophil Extracellular Traps Participate in Cardiovascular Diseases. Circulation Research, 2020, 126, 1228-1241.	2.0	198
32	Thrombo-Inflammation in Cardiovascular Disease: An Expert Consensus Document from the Third Maastricht Consensus Conference on Thrombosis. Thrombosis and Haemostasis, 2020, 120, 538-564.	1.8	64
33	Artery-Associated Sympathetic Innervation Drives Rhythmic Vascular Inflammation of Arteries and Veins. Circulation, 2019, 140, 1100-1114.	1.6	37
34	Myeloid-Specific Deletion of the AMPKα2 Subunit Alters Monocyte Protein Expression and Atherogenesis. International Journal of Molecular Sciences, 2019, 20, 3005.	1.8	9
35	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	6.6	258
36	Neutrophil Research, Quo Vadis?. Trends in Immunology, 2019, 40, 561-564.	2.9	8

#	Article	IF	CITATIONS
37	Heparinoid sevuparin inhibits <i>Streptococcus</i> â€induced vascular leak through neutralizing neutrophilâ€derived proteins. FASEB Journal, 2019, 33, 10443-10452.	0.2	21
38	Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. Journal of Biological Chemistry, 2019, 294, 12370-12379.	1.6	17
39	Pro-Angiogenic Macrophage Phenotype to Promote Myocardial Repair. Journal of the American College of Cardiology, 2019, 73, 2990-3002.	1.2	117
40	Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends in Immunology, 2019, 40, 648-664.	2.9	145
41	Externalized histone H4 orchestrates chronic inflammation by inducing lytic cell death. Nature, 2019, 569, 236-240.	13.7	268
42	Hematopoietic ChemR23 (Chemerin Receptor 23) Fuels Atherosclerosis by Sustaining an M1 Macrophage-Phenotype and Guidance of Plasmacytoid Dendritic Cells to Murine Lesions—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 685-693.	1.1	31
43	Therapeutic Targeting of Neutrophil Extracellular Traps in Atherogenic Inflammation. Thrombosis and Haemostasis, 2019, 119, 542-552.	1.8	39
44	Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nature Communications, 2018, 9, 1523.	5.8	86
45	The Ins and Outs of Myeloid Cells in Atherosclerosis. Journal of Innate Immunity, 2018, 10, 479-486.	1.8	15
46	Targeting CD40-Induced TRAF6 Signaling in Macrophages Reduces Atherosclerosis. Journal of the American College of Cardiology, 2018, 71, 527-542.	1.2	149
47	Decision shaping neutrophilâ€platelet interplay in inflammation: From physiology to intervention. European Journal of Clinical Investigation, 2018, 48, e12871.	1.7	10
48	Macrophage Inflammation, Erythrophagocytosis, and Accelerated Atherosclerosis in <i>Jak2</i> ^{<i>V617F</i>} Mice. Circulation Research, 2018, 123, e35-e47.	2.0	173
49	Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Frontiers in Immunology, 2018, 9, 2739.	2.2	115
50	Neutrophils instruct homeostatic and pathological states in naive tissues. Journal of Experimental Medicine, 2018, 215, 2778-2795.	4.2	200
51	The potential of chronopharmacology for treatment of atherosclerosis. Current Opinion in Lipidology, 2018, 29, 368-374.	1.2	11
52	Nutritional Modulation of Innate Immunity: The Fat–Bile–Gut Connection. Trends in Endocrinology and Metabolism, 2018, 29, 686-698.	3.1	23
53	Chrono-pharmacological Targeting of the CCL2-CCR2 Axis Ameliorates Atherosclerosis. Cell Metabolism, 2018, 28, 175-182.e5.	7.2	139
54	A Pad 4 Plaque Erosion. Circulation Research, 2018, 123, 6-8.	2.0	6

#	Article	IF	CITATIONS
55	Double-Strand DNA Sensing Aim2 Inflammasome Regulates Atherosclerotic Plaque Vulnerability. Circulation, 2018, 138, 321-323.	1.6	69
56	Neutrophils orchestrate post-myocardial infarction healing by polarizing macrophages towards a reparative phenotype. European Heart Journal, 2017, 38, ehw002.	1.0	443
57	Human Neutrophil Peptide 1 Limits Hypercholesterolemia-induced Atherosclerosis by Increasing Hepatic LDL Clearance. EBioMedicine, 2017, 16, 204-211.	2.7	10
58	Neutrophil Extracellular Traps in Atherosclerosis and Atherothrombosis. Circulation Research, 2017, 120, 736-743.	2.0	348
59	Circadian Control of Inflammatory Processes in Atherosclerosis and Its Complications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1022-1028.	1.1	46
60	Chemokine interactome mapping enables tailored intervention in acute and chronic inflammation. Science Translational Medicine, 2017, 9, .	5.8	121
61	Neutrophils as protagonists and targets in chronic inflammation. Nature Reviews Immunology, 2017, 17, 248-261.	10.6	409
62	Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 312-315.	1.1	28
63	Standardizing animal atherosclerosis studies to improve reproducibility. Nature Reviews Cardiology, 2017, 14, 574-575.	6.1	1
64	The advantageous role of annexin A1 in cardiovascular disease. Cell Adhesion and Migration, 2017, 11, 261-274.	1.1	38
65	Cathelicidin regulates myeloid cell accumulation in adipose tissue and promotes insulin resistance during obesity. Thrombosis and Haemostasis, 2016, 115, 1237-1239.	1.8	7
66	The timeâ€ofâ€day of myocardial infarction onset affects healing through oscillations in cardiac neutrophil recruitment. EMBO Molecular Medicine, 2016, 8, 937-948.	3.3	115
67	Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood, 2016, 127, 2173-2181.	0.6	347
68	Monocytes Chat With Atherosclerotic Lesions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1720-1721.	1.1	1
69	Cathepsin G Controls Arterial But Not Venular Myeloid Cell Recruitment. Circulation, 2016, 134, 1176-1188.	1.6	54
70	Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circulation Research, 2016, 119, 1030-1038.	2.0	180
71	Structure-Based Design of Peptidic Inhibitors of the Interaction between CC Chemokine Ligand 5 (CCL5) and Human Neutrophil Peptides 1 (HNP1). Journal of Medicinal Chemistry, 2016, 59, 4289-4301.	2.9	28
72	Platelet CD40 Exacerbates Atherosclerosis by Transcellular Activation of Endothelial Cells and Leukocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 482-490.	1.1	90

#	Article	IF	CITATIONS
73	Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice. PLoS ONE, 2016, 11, e0163922.	1.1	18
74	Neutrophil-macrophage interplay in atherosclerosis: protease-mediated cytokine processing versus NET release. Thrombosis and Haemostasis, 2015, 114, 866-867.	1.8	25
75	Evaluation of the BDCA2-DTR Transgenic Mouse Model in Chronic and Acute Inflammation. PLoS ONE, 2015, 10, e0134176.	1.1	8
76	Atherosclerotic Plaque Destabilization in Mice: A Comparative Study. PLoS ONE, 2015, 10, e0141019.	1.1	31
77	Chemokines Control Mobilization, Recruitment, and Fate of Monocytes in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1050-1055.	1.1	46
78	Hyperreactivity of Junctional Adhesion Molecule A-Deficient Platelets Accelerates Atherosclerosis in Hyperlipidemic Mice. Circulation Research, 2015, 116, 587-599.	2.0	67
79	Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Science Translational Medicine, 2015, 7, 317ra196.	5.8	90
80	Annexin A1 Counteracts Chemokine-Induced Arterial Myeloid Cell Recruitment. Circulation Research, 2015, 116, 827-835.	2.0	124
81	Atherosclerosis – A matter of unresolved inflammation. Seminars in Immunology, 2015, 27, 184-193.	2.7	193
82	Assessing Large-Vessel Endothelial Permeability Using Near-Infrared Fluorescence Imaging—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 783-786.	1.1	11
83	Neutrophils in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 288-295.	1.1	166
84	Intravital Microscopy for Atherosclerosis Research. Methods in Molecular Biology, 2015, 1339, 41-60.	0.4	2
85	Rubbing salt into wounded endothelium: Sodium potentiates proatherogenic effects of TNF-α under non-uniform shear stress. Thrombosis and Haemostasis, 2014, 112, 183-195.	1.8	21
86	Inflammatory role and prognostic value of platelet chemokines in acute coronary syndrome. Thrombosis and Haemostasis, 2014, 112, 1277-1287.	1.8	36
87	Deficiency of MAPK-activated protein kinase 2 (MK2) prevents adverse remodelling and promotes endothelial healing after arterial injury. Thrombosis and Haemostasis, 2014, 112, 1264-1276.	1.8	20
88	Deficiency of the Sialyltransferase <i>St3Gal4</i> Reduces Ccl5-Mediated Myeloid Cell Recruitment and Arrest. Circulation Research, 2014, 114, 976-981.	2.0	43
89	CCR5 and FPR1 Mediate Neutrophil Recruitment in Endotoxin-Induced Lung Injury. Journal of Innate Immunity, 2014, 6, 111-116.	1.8	49
90	Nanomedicine-based strategies for treatment of atherosclerosis. Trends in Molecular Medicine, 2014, 20, 271-281.	3.5	79

#	Article	IF	CITATIONS
91	Atherosclerotic Plaque Destabilization. Circulation Research, 2014, 114, 214-226.	2.0	266
92	High-Resolution Imaging of Intravascular Atherogenic Inflammation in Live Mice. Circulation Research, 2014, 114, 770-779.	2.0	74
93	Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap–mediated sterile inflammation. Blood, 2014, 123, 2573-2584.	0.6	234
94	Nonanticoagulant heparin prevents histone-mediated cytotoxicity in vitro and improves survival in sepsis. Blood, 2014, 123, 1098-1101.	0.6	242
95	Cathelicidin LLâ€37 induces timeâ€resolved release of LTB ₄ and TXA ₂ by human macrophages and triggers eicosanoid generation <i>in vivo</i> . FASEB Journal, 2014, 28, 3456-3467.	0.2	29
96	The ABC of Thrombopoiesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 700-701.	1.1	4
97	Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thrombosis and Haemostasis, 2014, 112, 562-564.	1.8	27
98	Macrophages shine bright. Blood, 2014, 124, 2320-2322.	0.6	2
99	The Complexity of Arterial Classical Monocyte Recruitment. Journal of Innate Immunity, 2013, 5, 358-366.	1.8	15
100	Nitric Oxide-Donating Statins Upgrade the Benefits of Lipid-Lowering in Vascular Inflammation by Desensitizing Neutrophil Activation. Cardiovascular Drugs and Therapy, 2013, 27, 183-185.	1.3	0
101	Neutrophil-Derived Cathelicidin Promotes Adhesion of Classical Monocytes. Circulation Research, 2013, 112, 792-801.	2.0	132
102	Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends in Endocrinology and Metabolism, 2013, 24, 129-136.	3.1	83
103	Resolution of inflammation: an integrated view. EMBO Molecular Medicine, 2013, 5, 661-674.	3.3	586
104	Distinct functions of chemokine receptor axes in the atherogenic mobilization and recruitment of classical monocytes. EMBO Molecular Medicine, 2013, 5, 471-481.	3.3	169
105	Myeloid Cells in Traffic. Journal of Innate Immunity, 2013, 5, 301-303.	1.8	1
106	Abstract 14: Small Molecule Inhibitors of the CD40-TRAF6 Interaction Reduce Atherosclerosis by Inducing Hypo-inflammatory Myeloid Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, .	1.1	0
107	Hematopoietic Interferon Regulatory Factor 8-Deficiency Accelerates Atherosclerosis in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1613-1623.	1.1	42
108	Auto-Antigenic Protein-DNA Complexes Stimulate Plasmacytoid Dendritic Cells to Promote Atherosclerosis. Circulation, 2012, 125, 1673-1683.	1.6	347

#	Article	IF	CITATIONS
109	Disruption of Platelet-derived Chemokine Heteromers Prevents Neutrophil Extravasation in Acute Lung Injury. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 628-636.	2.5	202
110	Lack of Neutrophil-Derived CRAMP Reduces Atherosclerosis in Mice. Circulation Research, 2012, 110, 1052-1056.	2.0	203
111	Contribution of Platelet CX ₃ CR1 to Platelet–Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 1186-1193.	1.1	76
112	Multiple Roles for Neutrophils in Atherosclerosis. Circulation Research, 2012, 110, 875-888.	2.0	373
113	Presence of luminal neutrophil extracellular traps in atherosclerosis. Thrombosis and Haemostasis, 2012, 107, 597-598.	1.8	212
114	Interleukinâ€13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Molecular Medicine, 2012, 4, 1072-1086.	3.3	211
115	Thrombin Inhibition Prevents Against Severe Atherosclerosis Progression in Prothrombotic Mice. Blood, 2012, 120, 103-103.	0.6	0
116	Lipoprotein-Derived Lysophosphatidic Acid Promotes Atherosclerosis by Releasing CXCL1Âfrom the Endothelium. Cell Metabolism, 2011, 13, 592-600.	7.2	176
117	Neutrophilic granulocytes – promiscuous accelerators of atherosclerosis. Thrombosis and Haemostasis, 2011, 106, 839-848.	1.8	55
118	Contribution of Neutrophils to Acute Lung Injury. Molecular Medicine, 2011, 17, 293-307.	1.9	1,048
119	Neutrophil-Derived Cathelicidin Protects from Neointimal Hyperplasia. Science Translational Medicine, 2011, 3, 103ra98.	5.8	100
120	ANESTHESIA AGGRAVATES LUNG DAMAGE AND PRECIPITATES HYPOTENSION IN ENDOTOXEMIC SHEEP. Shock, 2010, 34, 412-419.	1.0	15
121	Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood, 2010, 116, 4317-4327.	0.6	249
122	Phagocyte partnership during the onset and resolution of inflammation. Nature Reviews Immunology, 2010, 10, 427-439.	10.6	834
123	Hyperlipidemia-Triggered Neutrophilia Promotes Early Atherosclerosis. Circulation, 2010, 122, 1837-1845.	1.6	571
124	Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. Journal of Experimental Medicine, 2010, 207, 391-404.	4.2	232
125	A New Monocyte Chemotactic Protein-1/Chemokine CC Motif Ligand-2 Competitor Limiting Neointima Formation and Myocardial Ischemia/Reperfusion Injury in Mice. Journal of the American College of Cardiology, 2010, 56, 1847-1857.	1.2	110
126	Distinct Infiltration of Neutrophils in Lesion Shoulders in ApoEâ^'/â^' Mice. American Journal of Pathology, 2010, 177, 493-500.	1.9	127

#	Article	IF	CITATIONS
127	Functional alterations of myeloid cell subsets in hyperlipidaemia: relevance for atherosclerosis. Journal of Cellular and Molecular Medicine, 2009, 13, 4293-4303.	1.6	31
128	Direct and alternative antimicrobial mechanisms of neutrophil-derived granule proteins. Journal of Molecular Medicine, 2009, 87, 1157-1164.	1.7	69
129	Neutrophil granule proteins tune monocytic cell function. Trends in Immunology, 2009, 30, 538-546.	2.9	139
130	Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood, 2009, 114, 4613-4623.	0.6	220
131	Protective Role of CXC Receptor 4/CXC Ligand 12 Unveils the Importance of Neutrophils in Atherosclerosis. Circulation Research, 2008, 102, 209-217.	2.0	363
132	Neutrophil secretion products pave the way for inflammatory monocytes. Blood, 2008, 112, 1461-1471.	0.6	343
133	Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. Journal of Clinical Investigation, 2008, 118, 3491-3502.	3.9	175
134	Neutrophilâ€induced increase in vascular permeability involves activation of the contact system. FASEB Journal, 2008, 22, 731.3.	0.2	0
135	Upregulation of Fcl ³ RI (CD64) and Fcl ³ RII (CD32) by neutrophil secretion products enhances bacterial phagocytosis in macrophages. FASEB Journal, 2007, 21, A768.	0.2	0
136	Neutrophil degranulation as crucial step in severe lung damage by <i>Streptococcus pyogenes</i> . FASEB Journal, 2007, 21, A408.	0.2	0
137	Streptococcal M Protein: A Multipotent and Powerful Inducer of Inflammation. Journal of Immunology, 2006, 177, 1221-1228.	0.4	132
138	Neutrophil secretion products stimulate phagocytosis in macrophages. FASEB Journal, 2006, 20, A704.	0.2	0
139	Neutrophil-Derived Heparin-Binding Protein (HBP/CAP37) Deposited on Endothelium Enhances Monocyte Arrest under Flow Conditions. Journal of Immunology, 2005, 174, 6399-6405.	0.4	76