
## Aleksei Tiulpin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6153187/publications.pdf Version: 2024-02-01



ALEKSEL TILLI DIN

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Automatic Knee Osteoarthritis Diagnosis from Plain Radiographs: A Deep Learning-Based Approach.<br>Scientific Reports, 2018, 8, 1727.                                                                                             | 3.3 | 358       |
| 2  | Gray Matter Age Prediction as a Biomarker for Risk of Dementia. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21213-21218.                                                          | 7.1 | 147       |
| 3  | Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain<br>Radiographs and Clinical Data. Scientific Reports, 2019, 9, 20038.                                                                     | 3.3 | 145       |
| 4  | DGC-Net: Dense Geometric Correspondence Network. , 2019, , .                                                                                                                                                                      |     | 61        |
| 5  | Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs Using Deep<br>Convolutional Neural Networks. Diagnostics, 2020, 10, 932.                                                                        | 2.6 | 60        |
| 6  | Improving Robustness of Deep Learning Based Knee MRI Segmentation: Mixup and Adversarial Domain Adaptation. , 2019, , .                                                                                                           |     | 44        |
| 7  | Deep learning identifies morphological features in breast cancer predictive of cancer ERBB2 status and trastuzumab treatment efficacy. Scientific Reports, 2021, 11, 4037.                                                        | 3.3 | 43        |
| 8  | A Novel Method for Automatic Localization of Joint Area on Knee Plain Radiographs. Lecture Notes in<br>Computer Science, 2017, , 290-301.                                                                                         | 1.3 | 30        |
| 9  | Critical evaluation of deep neural networks for wrist fracture detection. Scientific Reports, 2021, 11, 6006.                                                                                                                     | 3.3 | 27        |
| 10 | Deep learningâ€based segmentation of knee MRI for fully automatic subregional morphological<br>assessment of cartilage tissues: Data from the Osteoarthritis Initiative. Journal of Orthopaedic<br>Research, 2022, 40, 1113-1124. | 2.3 | 25        |
| 11 | <i>Semixup</i> : In- and Out-of-Manifold Regularization for Deep Semi-Supervised Knee Osteoarthritis<br>Severity Grading From Plain Radiographs. IEEE Transactions on Medical Imaging, 2020, 39, 4346-4356.                       | 8.9 | 24        |
| 12 | KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks. , 2019, , .                                                                                                                                                |     | 22        |
| 13 | Development of osteoarthritis in patients with degenerative meniscal tears treated with exercise therapy or surgery: a randomized controlled trial. Osteoarthritis and Cartilage, 2020, 28, 897-906.                              | 1.3 | 21        |
| 14 | Adaptive segmentation of knee radiographs for selecting the optimal ROI in texture analysis.<br>Osteoarthritis and Cartilage, 2020, 28, 941-952.                                                                                  | 1.3 | 21        |
| 15 | Automating three-dimensional osteoarthritis histopathological grading of human osteochondral tissue using machine learning on contrast-enhanced micro-computed tomography. Osteoarthritis and Cartilage, 2020, 28, 1133-1144.     | 1.3 | 11        |
| 16 | Automated analysis of rabbit knee calcified cartilage morphology using microâ€computed tomography<br>and deep learning. Journal of Anatomy, 2021, 239, 251-263.                                                                   | 1.5 | 10        |
| 17 | Bayesian Feature Pyramid Networks for Automatic Multi-label Segmentation of Chest X-rays and Assessment of Cardio-Thoratic Ratio. Lecture Notes in Computer Science, 2020, , 117-130.                                             | 1.3 | 10        |
| 18 | Acoustic emissions and kinematic instability of the osteoarthritic knee joint: comparison with radiographic findings. Scientific Reports, 2021, 11, 19558.                                                                        | 3.3 | 7         |

Aleksei Tiulpin

| #  | Article                                                                                                                                                              | lF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CLIMAT: Clinically-Inspired Multi-Agent Transformers for Knee Osteoarthritis Trajectory Forecasting. , 2022, , .                                                     |     | 6         |
| 20 | Breast Tumor Cellularity Assessment Using Deep Neural Networks. , 2019, , .                                                                                          |     | 5         |
| 21 | Deep-Learning for Tidemark Segmentation in Human Osteochondral Tissues Imaged with<br>Micro-computed Tomography. Lecture Notes in Computer Science, 2020, , 131-138. | 1.3 | 4         |
| 22 | Detection of experimental cartilage damage with acoustic emissions technique: An in vitro equine<br>study. Equine Veterinary Journal, 2020, 52, 152-157.             | 1.7 | 3         |
| 23 | Outcome and biomarker supervised deep learning for survival prediction in two multicenter breast cancer series. Journal of Pathology Informatics, 2022, 13, 100171.  | 1.7 | 3         |
| 24 | Deep Semi-Supervised Active Learning for Knee Osteoarthritis Severity Grading. , 2022, , .                                                                           |     | 3         |
| 25 | Evaluation of WAMP protocol in real-time remote ECG monitoring. IFMBE Proceedings, 2018, , 25-28.                                                                    | 0.3 | 0         |
| 26 | Predicting Knee Osteoarthritis Progression from Structural MRI Using Deep Learning. , 2022, , .                                                                      |     | 0         |