List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6153134/publications.pdf Version: 2024-02-01

IAN VAN DEN BOSSCH

#	Article	IF	CITATIONS
1	Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovascular Research, 2023, 119, 1146-1160.	1.8	18
2	An integrated toolbox to profile macrophage immunometabolism. Cell Reports Methods, 2022, 2, 100192.	1.4	18
3	The glucose transporter GLUT3 controls T helper 17 cell responses through glycolytic-epigenetic reprogramming. Cell Metabolism, 2022, 34, 516-532.e11.	7.2	70
4	d-2-Hydroxyglutarate is an anti-inflammatory immunometabolite that accumulates in macrophages after TLR4 activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166427.	1.8	19
5	The effect of macrophage-targeted interventions on blood pressure – a systematic review and meta-analysis of preclinical studies. Translational Research, 2021, 230, 123-138.	2.2	2
6	Single-cell metabolic profiling of human cytotoxic T cells. Nature Biotechnology, 2021, 39, 186-197.	9.4	187
7	Unconventional interleukin-1β release suppresses antitumor immunity. Science Translational Medicine, 2021, 13, .	5.8	1
8	α2-3 Sialic acid binding and uptake by human monocyte-derived dendritic cells alters metabolism and cytokine release and initiates tolerizing T cell programming. Immunotherapy Advances, 2021, 1, .	1.2	7
9	Keep your macrophages fit for healthy aging. Cell Metabolism, 2021, 33, 468-470.	7.2	0
10	Myeloid ATP Citrate Lyase Regulates Macrophage Inflammatory Responses In Vitro Without Altering Inflammatory Disease Outcomes. Frontiers in Immunology, 2021, 12, 669920.	2.2	6
11	Myeloid-Specific Acly Deletion Alters Macrophage Phenotype In Vitro and In Vivo without Affecting Tumor Growth. Cancers, 2021, 13, 3054.	1.7	6
12	IFN-γ Drives Human Monocyte Differentiation into Highly Proinflammatory Macrophages That Resemble a Phenotype Relevant to Psoriasis. Journal of Immunology, 2021, 207, 555-568.	0.4	15
13	IDH-Mutant Brain Tumors Hit the Achilles' Heel of Macrophages with R-2-Hydroxyglutarate. Trends in Cancer, 2021, 7, 666-667.	3.8	6
14	The multifaceted therapeutic value of targeting ATP-citrate lyase in atherosclerosis. Trends in Molecular Medicine, 2021, 27, 1095-1105.	3.5	17
15	Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports, 2021, 37, 110171.	2.9	69
16	Immunometabolism in the Single-Cell Era. Cell Metabolism, 2020, 32, 710-725.	7.2	116
17	Metabolic Cancer-Macrophage Crosstalk in the Tumor Microenvironment. Biology, 2020, 9, 380.	1.3	16
18	Monocyte-derived APCs are central to the response of PD1 checkpoint blockade and provide a		38

therapeutic target for combination therapy. , 2020, 8, e000588.

#	Article	IF	CITATIONS
19	Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188427.	3.3	61
20	Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites, 2020, 10, 372.	1.3	63
21	Macrophage ATP citrate lyase deficiency stabilizes atherosclerotic plaques. Nature Communications, 2020, 11, 6296.	5.8	70
22	Intestinal Macrophages Balance Inflammatory Expression Profiles via Vitamin A and Dectin-1-Mediated Signaling. Frontiers in Immunology, 2020, 11, 551.	2.2	22
23	Myeloid Ezh2 Deficiency Limits Atherosclerosis Development. Frontiers in Immunology, 2020, 11, 594603.	2.2	11
24	Macrophages make you stronger. Science Translational Medicine, 2020, 12, .	5.8	0
25	A brake on inflammaging. Science Translational Medicine, 2020, 12, .	5.8	1
26	Improving metabolic fitness of antitumor immune cells. Science Translational Medicine, 2020, 12, .	5.8	0
27	Metabolic control of NLRP3 inflammasome by itaconation. Science Translational Medicine, 2020, 12, .	5.8	Ο
28	Fatty exosomes hamper antitumor immunity. Science Translational Medicine, 2020, 12, .	5.8	2
29	Rewiring of immune-metabolic crosstalk in the liver after viral infection. Journal of Molecular Medicine, 2019, 97, 1245-1246.	1.7	0
30	Metabolic–epigenetic crosstalk in macrophage activation: an updated view. Epigenomics, 2019, 11, 719-721.	1.0	9
31	Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovascular Research, 2019, 115, 1385-1392.	1.8	58
32	Let's Enter the Wonderful World of Immunometabolites. Trends in Endocrinology and Metabolism, 2019, 30, 329-331.	3.1	8
33	Going -omics to identify novel therapeutic targets for cardiovascular disease. EBioMedicine, 2019, 41, 7-8.	2.7	1
34	Targeting Histone Deacetylases in Myeloid Cells Inhibits Their Maturation and Inflammatory Function With Limited Effects on Atherosclerosis. Frontiers in Pharmacology, 2019, 10, 1242.	1.6	16
35	Metabolic Alterations in Aging Macrophages: Ingredients for Inflammaging?. Trends in Immunology, 2019, 40, 113-127.	2.9	125
36	Salt increases monocyte CCR2 expression and inflammatory responses in humans. JCI Insight, 2019, 4, .	2.3	34

#	Article	IF	CITATIONS
37	Metabolic regulation of macrophages in tissues. Cellular Immunology, 2018, 330, 54-59.	1.4	62
38	A Defective Pentose Phosphate Pathway Reduces Inflammatory Macrophage Responses during Hypercholesterolemia. Cell Reports, 2018, 25, 2044-2052.e5.	2.9	140
39	Fatty Acid Oxidation in Macrophages and T Cells: Time for Reassessment?. Cell Metabolism, 2018, 28, 538-540.	7.2	48
40	Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Reports, 2018, 24, 2127-2140.e7.	2.9	110
41	Myeloid Kdm6b deficiency results in advanced atherosclerosis. Atherosclerosis, 2018, 275, 156-165.	0.4	22
42	High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis, 2017, 263, 377-384.	0.4	33
43	Macrophage Immunometabolism: Where Are We (Going)?. Trends in Immunology, 2017, 38, 395-406.	2.9	758
44	Macrophage Kdm6b controls the pro-fibrotic transcriptome signature of foam cells. Epigenomics, 2017, 9, 383-391.	1.0	24
45	Helminth antigens counteract a rapid high-fat diet-induced decrease in adipose tissue eosinophils. Journal of Molecular Endocrinology, 2017, 59, 245-255.	1.1	17
46	Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology, 2017, 222, 937-943.	0.8	49
47	CD70 limits atherosclerosis and promotes macrophage function. Thrombosis and Haemostasis, 2017, 117, 164-175.	1.8	21
48	PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. European Heart Journal, 2017, 38, 1584-1593.	1.0	141
49	Liposomal prednisolone promotes macrophage lipotoxicity in experimental atherosclerosis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1463-1470.	1.7	32
50	Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Reports, 2016, 17, 684-696.	2.9	595
51	Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation, 2016, 134, 611-624.	1.6	396
52	Myeloid interferon-γ receptor deficiency does not affect atherosclerosis in LDLR-/- mice. Atherosclerosis, 2016, 246, 325-333.	0.4	6
53	Interferon-Î ² promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms. Cytokine, 2016, 77, 220-226.	1.4	29
54	E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Scientific Reports, 2015, 5, 12599.	1.6	29

#	Article	IF	CITATIONS
55	Metabolic Characterization of Polarized M1 and M2 Bone Marrow-derived Macrophages Using Real-time Extracellular Flux Analysis. Journal of Visualized Experiments, 2015, , .	0.2	170
56	Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis. European Journal of Pharmacology, 2015, 763, 79-89.	1.7	64
57	IFN-γ Priming of Macrophages Represses a Part of the Inflammatory Program and Attenuates Neutrophil Recruitment. Journal of Immunology, 2015, 194, 3909-3916.	0.4	56
58	Metabolic–epigenetic crosstalk in macrophage activation. Epigenomics, 2015, 7, 1155-1164.	1.0	51
59	Inhibiting epigenetic enzymes to improve atherogenic macrophage functions. Biochemical and Biophysical Research Communications, 2014, 455, 396-402.	1.0	66
60	Macrophage polarization. Current Opinion in Lipidology, 2014, 25, 367-373.	1.2	75
61	Targeting macrophage Histone deacetylase 3 stabilizes atherosclerotic lesions. EMBO Molecular Medicine, 2014, 6, 1124-1132.	3.3	140
62	Eâ€cadherin: From epithelial glue to immunological regulator. European Journal of Immunology, 2013, 43, 34-37.	1.6	25
63	BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality. PLoS ONE, 2013, 8, e74083.	1.1	82
64	Pivotal Advance: Arginase-1-independent polyamine production stimulates the expression of IL-4-induced alternatively activated macrophage markers while inhibiting LPS-induced expression of inflammatory genes. Journal of Leukocyte Biology, 2012, 91, 685-699.	1.5	100
65	Regulation and function of the E-cadherin/catenin complex in cells of the monocyte-macrophage lineage and DCs. Blood, 2012, 119, 1623-1633.	0.6	138
66	The <scp>CD</scp> 20 homolog <scp>M</scp> s4a8a integrates pro―and antiâ€inflammatory signals in novel <scp>M</scp> 2â€ike macrophages and is expressed in parasite infection. European Journal of Immunology, 2012, 42, 2971-2982.	1.6	14
67	Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology, 2011, 216, 1192-1202.	0.8	88
68	Tumor-associated macrophages in breast cancer: distinct subsets, distinct functions. International Journal of Developmental Biology, 2011, 55, 861-867.	0.3	255
69	Different Tumor Microenvironments Contain Functionally Distinct Subsets of Macrophages Derived from Ly6C(high) Monocytes. Cancer Research, 2010, 70, 5728-5739.	0.4	1,018
70	Origin, phenotype and function of monocyte/macrophage subsets in distinct mammary tumor microenvironments. Cytokine, 2009, 48, 8.	1.4	0
71	Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood, 2009, 114, 4664-4674.	0.6	103
72	Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood, 2008, 111, 4233-4244.	0.6	1,081

#	Article	IF	CITATIONS
73	Macrophages, PPARs, and Cancer. PPAR Research, 2008, 2008, 1-11.	1.1	41