Jordan M Malof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6152750/publications.pdf

Version: 2024-02-01

1040056 1199594 30 795 9 12 citations g-index h-index papers 30 30 30 746 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	GridTracer: Automatic Mapping of Power Grids Using Deep Learning and Overhead Imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4956-4970.	4.9	4
2	Inverse deep learning methods and benchmarks for artificial electromagnetic material design. Nanoscale, 2022, 14, 3958-3969.	5 . 6	21
3	Utilizing Geospatial Data for Assessing Energy Security: Mapping Small Solar Home Systems Using Unmanned Aerial Vehicles and Deep Learning. ISPRS International Journal of Geo-Information, 2022, 11, 222.	2.9	8
4	SIMPL: Generating Synthetic Overhead Imagery to Address Custom Zero-Shot and Few-Shot Detection Problems. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 4386-4396.	4.9	7
5	Learning the Physics of Allâ€Dielectric Metamaterials with Deep Lorentz Neural Networks. Advanced Optical Materials, 2022, 10, .	7.3	13
6	Neural-adjoint method for the inverse design of all-dielectric metasurfaces. Optics Express, 2021, 29, 7526.	3.4	43
7	Deep Learning the Electromagnetic Properties of Metamaterials—A Comprehensive Review. Advanced Functional Materials, 2021, 31, 2101748.	14.9	70
8	The Synthinel-1 dataset: a collection of high resolution synthetic overhead imagery for building segmentation., 2020,,.		20
9	Deep learning for accelerated all-dielectric metasurface design. Optics Express, 2019, 27, 27523.	3.4	278
10	A Large-Scale Multi-Institutional Evaluation of Advanced Discrimination Algorithms for Buried Threat Detection in Ground Penetrating Radar. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 6929-6945.	6. 3	16
11	Training a single multi-class convolutional segmentation network using multiple datasets with heterogeneous labels: preliminary results. , 2019, , .		5
12	A simple rotational equivariance loss for generic convolutional segmentation networks: preliminary results. , $2019, $, .		3
13	On Choosing Training and Testing Data for Supervised Algorithms in Ground-Penetrating Radar Data for Buried Threat Detection. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56, 497-507.	6. 3	12
14	On The Extraction of Training Imagery from Very Large Remote Sensing Datasets for Deep Convolutional Segmenatation Networks. , 2018, , .		1
15	Automated Building Energy Consumption Estimation from Aerial Imagery. , 2018, , .		1
16	Deep Convolutional Segmentation of Remote Sensing Imagery: A Simple and Efficient Alternative to Stitching Output Labels. , 2018, , .		5
17	Improving the histogram of oriented gradient feature for threat detection in ground penetrating radar by implementing it as a trainable convolutional neural network. , 2018, , .		6
18	How much shape information is enough, or too much? Designing imaging descriptors for threat detection in ground penetrating radar data. , 2018 , , .		1

#	Article	IF	CITATIONS
19	Some good practices for applying convolutional neural networks to buried threat detection in Ground Penetrating Radar. , 2017, , .		31
20	Three-dimensional features, based on beamforming at multiple depths, improves landmine detection with a forward-looking ground-penetrating radar. , 2017, , .		2
21	A deep convolutional neural network, with pre-training, for solar photovoltaic array detection in aerial imagery. , 2017 , , .		33
22	The effect of translational variance in training and testing images on supervised buried threat detection algorithms for ground penetrating radar. , 2017, , .		0
23	Estimating the electricity generation capacity of solar photovoltaic arrays using only color aerial imagery. , $2017, \ldots$		8
24	The poor generalization of deep convolutional networks to aerial imagery from new geographic locations: an empirical study with solar array detection., $2017,$		4
25	Trading spatial resolution for improved accuracy in remote sensing imagery: an empirical study using synthetic data., 2017,,.		1
26	The poor generalization of deep convolutional networks to aerial imagery from new geographic locations: an empirical study with solar array detection., $2017,$		10
27	A Probabilistic Model for Designing Multimodality Landmine Detection Systems to Improve Rates of Advance. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54, 5258-5270.	6.3	1
28	Distributed solar photovoltaic array location and extent dataset for remote sensing object identification. Scientific Data, 2016, 3, 160106.	5.3	73
29	Automatic detection of solar photovoltaic arrays in high resolution aerial imagery. Applied Energy, 2016, 183, 229-240.	10.1	118
30	Leveraging seed dictionaries to improve dictionary learning. , 2016, , .		0