List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6152509/publications.pdf Version: 2024-02-01

SEDENELLA NADDI

#	Article	IF	CITATIONS
1	Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy, 2021, 11, 518.	1.3	4
2	Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules, 2021, 26, 2256.	1.7	121
3	The Relevance of Plant-Derived Se Compounds to Human Health in the SARS-CoV-2 (COVID-19) Pandemic Era. Antioxidants, 2021, 10, 1031.	2.2	11
4	Transcriptional and Physiological Analyses to Assess the Effects of a Novel Biostimulant in Tomato. Frontiers in Plant Science, 2021, 12, 781993.	1.7	9
5	Effectiveness of Humic Substances and Phenolic Compounds in Regulating Plant-Biological Functionality. Agronomy, 2020, 10, 1553.	1.3	12
6	Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant and Soil, 2020, 453, 245-270.	1.8	138
7	Bioactivity of Size-Fractionated and Unfractionated Humic Substances From Two Forest Soils and Comparative Effects on N and S Metabolism, Nutrition, and Root Anatomy of Allium sativum L. Frontiers in Plant Science, 2020, 11, 1203.	1.7	29
8	Heart of darkness: an interdisciplinary investigation of the urban anthropic deposits of the Baptistery of Padua (Italy). Archaeological and Anthropological Sciences, 2019, 11, 1977-1993.	0.7	4
9	Effects of Two Protein Hydrolysates Obtained From Chickpea (Cicer arietinum L.) and Spirulina platensis on Zea mays (L.) Plants. Frontiers in Plant Science, 2019, 10, 954.	1.7	32
10	Expression Profiling of Candidate Genes in Sugar Beet Leaves Treated with Leonardite-Based Biostimulant. High-Throughput, 2019, 8, 18.	4.4	6
11	Metabolite-Targeted Analysis and Physiological Traits of Zea mays L. in Response to Application of a Leonardite-Humate and Lignosulfonate-Based Products for Their Evaluation as Potential Biostimulants. Agronomy, 2019, 9, 445.	1.3	29
12	Molecular and Morphological Changes Induced by Leonardite-based Biostimulant in Beta vulgaris L Plants, 2019, 8, 181.	1.6	20
13	Short-Term Application of Polymer-Coated Mono-Ammonium Phosphate in a Calcareous Soil Affects the Pools of Available Phosphorus and the Growth of Hypericum × moserianum (L.). Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	13
14	Manure Fertilization Gives High-Quality Earthworm Coprolites with Positive Effects on Plant Growth and N Metabolism. Agronomy, 2019, 9, 659.	1.3	8
15	Hormone-like activity of the soil organic matter. Applied Soil Ecology, 2018, 123, 517-520.	2.1	38
16	Humusica 1, article 4: Terrestrial humus systems and forms — Specific terms and diagnostic horizons. Applied Soil Ecology, 2018, 122, 56-74.	2.1	33
17	Humusica 1, article 5: Terrestrial humus systems and forms — Keys of classification of humus systems and forms. Applied Soil Ecology, 2018, 122, 75-86.	2.1	45
18	Spectroscopic-Chemical Fingerprint and Biostimulant Activity of a Protein-Based Product in Solid Form. Molecules, 2018, 23, 1031.	1.7	22

#	Article	IF	CITATIONS
19	Innovative Approaches to Evaluate Sugar Beet Responses to Changes in Sulfate Availability. Frontiers in Plant Science, 2018, 9, 14.	1.7	29
20	Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Frontiers in Plant Science, 2018, 9, 428.	1.7	132
21	Biostimulant Potential of Humic Acids Extracted From an Amendment Obtained via Combination of Olive Mill Wastewaters (OMW) and a Pre-treated Organic Material Derived From Municipal Solid Waste (MSW). Frontiers in Plant Science, 2018, 9, 1028.	1.7	37
22	Soil–root crossâ€ŧalking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 2017, 180, 5-13.	1.1	87
23	Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 2017, 420, 119-134.	1.8	58
24	Soil porosity in physically separated fractions and its role in SOC protection. Journal of Soils and Sediments, 2017, 17, 70-84.	1.5	13
25	Transcriptome-Wide Identification of Differentially Expressed Genes in Solanum lycopersicon L. in Response to an Alfalfa-Protein Hydrolysate Using Microarrays. Frontiers in Plant Science, 2017, 8, 1159.	1.7	101
26	Chemical and Biochemical Properties of Soils Developed from Different Lithologies in Northwestern Spain (Galicia). Forests, 2017, 8, 135.	0.9	8
27	Land Use Affects the Soil C Sequestration in Alpine Environment, NE Italy. Forests, 2017, 8, 197.	0.9	20
28	Effects of moderate and high rates of biochar and compost on grapevine growth in a greenhouse experiment. AIMS Agriculture and Food, 2017, 2, 113-128.	0.8	9
29	Mini review: fruit residues as plant biostimulants for bio-based product recovery. AIMS Agriculture and Food, 2017, 2, 251-257.	0.8	4
30	Plant biostimulants: physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Scientia Agricola, 2016, 73, 18-23.	0.6	253
31	Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism. Molecules, 2016, 21, 205.	1.7	75
32	Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agriculture, Ecosystems and Environment, 2016, 233, 214-223.	2.5	71
33	Disentangling the effects of conservation agriculture practices on the vertical distribution of soil organic carbon. Evidence of poor carbon sequestration in North- Eastern Italy. Agriculture, Ecosystems and Environment, 2016, 230, 68-78.	2.5	64
34	Snow vole (<i>Chionomys nivalis</i> Martins) affects the redistribution of soil organic matter and hormoneâ€like activity in the alpine ecosystem: ecological implications. Ecology and Evolution, 2015, 5, 4542-4554.	0.8	19
35	Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	52
36	The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	45

#	Article	IF	CITATIONS
37	Effect of an Alfalfa Plant-Derived Biostimulant on Sulfur Nutrition in Tomato Plants. Proceedings of the International Plant Sulfur Workshop, 2015, , 215-220.	0.1	2
38	Spontaneous aggregation of humic acid observed with AFM at different pH. Chemosphere, 2015, 138, 821-828.	4.2	62
39	Protein hydrolysates as biostimulants in horticulture. Scientia Horticulturae, 2015, 196, 28-38.	1.7	455
40	Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Frontiers in Plant Science, 2014, 5, 375.	1.7	151
41	Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agriculture, Ecosystems and Environment, 2014, 189, 216-228.	2.5	56
42	Design of riparian buffer strips affects soil quality parameters. Applied Soil Ecology, 2014, 80, 67-76.	2.1	25
43	Topsoil organic matter properties in contrasted hedgerow vegetation types. Plant and Soil, 2014, 383, 337-348.	1.8	18
44	Fertilization of bean plants with tomato plants hydrolysates. Effect on biomass production, chlorophyll content and N assimilation. Scientia Horticulturae, 2014, 176, 194-199.	1.7	81
45	Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant and Soil, 2013, 364, 145-158.	1.8	233
46	Isopentenyladenosine and cytokinin-like activity of different humic substances. Journal of Geochemical Exploration, 2013, 129, 70-75.	1.5	98
47	Chemical analyses of archaeological sediments identified the ancient activity areas of an Iron age building at Rotzo (Vicenza, Italy). Quaternary International, 2013, 289, 101-112.	0.7	8
48	Humic-like substances from agro-industrial residues affect growth and nitrogen assimilation in maize (Zea mays L.) plantlets. Journal of Geochemical Exploration, 2013, 129, 103-111.	1.5	56
49	Humic substance: Relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 2013, 129, 57-63.	1.5	138
50	Use of meat hydrolyzate derived from tanning residues as plant biostimulant for hydroponically grown maize. Journal of Plant Nutrition and Soil Science, 2013, 176, 287-295.	1.1	56
51	Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture. Journal of Microbiology and Biotechnology, 2013, 23, 644-651.	0.9	40
52	Characterization of Humic Carbon in Soil Aggregates in a Longâ€ŧerm Experiment with Manure and Mineral Fertilization. Soil Science Society of America Journal, 2012, 76, 880-890.	1.2	33
53	Soil chemical analysis supports the identification of ancient breeding structures: The case-study of CÃ Tron (Venice, Italy). Quaternary International, 2012, 275, 128-136.	0.7	3
54	Phenolâ€containing organic substances stimulate phenylpropanoid metabolism in <i>Zea mays</i> . Journal of Plant Nutrition and Soil Science, 2011, 174, 496-503.	1.1	79

#	Article	IF	CITATIONS
55	Effect of Commercial Lignosulfonate-Humate on <i>Zea mays</i> L. Metabolism. Journal of Agricultural and Food Chemistry, 2011, 59, 11940-11948.	2.4	118
56	Anthropogenic deposits from the Bronze Age site of Fondo Paviani (Verona, Italy): Pedochemical and micropedological characteristics. Quaternary International, 2011, 243, 280-292.	0.7	17
57	Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany, 2011, 74, 45-55.	2.0	110
58	Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture, Ecosystems and Environment, 2011, 141, 58-66.	2.5	153
59	DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. Journal of Molecular Structure, 2011, 998, 216-224.	1.8	42
60	High Molecular Size Humic Substances Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). Journal of Chemical Ecology, 2010, 36, 662-669.	0.9	168
61	Structural characterization of humic-like substances with conventional and surface-enhanced spectroscopic techniques. Journal of Molecular Structure, 2010, 982, 169-175.	1.8	20
62	Humic substances biological activity at the plant-soil interface. Plant Signaling and Behavior, 2010, 5, 635-643.	1.2	274
63	Distribution of organic and humic carbon in wet-sieved aggregates of different soils under long-term fertilization experiment. Geoderma, 2010, 157, 80-85.	2.3	75
64	Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil, 2009, 315, 47-65.	1.8	81
65	Humic substances induce lateral root formation and expression of the early auxin-responsive <i>IAA19</i> gene and DR5 synthetic element in <i>Arabidopsis</i> . Plant Biology, 2009, 12, 604-14.	1.8	99
66	Effects of a Municipal Sewage Sludge Amendment on Triasulfuron Soil Sorption and Wheat Growth. Journal of Agricultural and Food Chemistry, 2009, 57, 11249-11253.	2.4	9
67	Effect of a Compost and Its Water-Soluble Fractions on Key Enzymes of Nitrogen Metabolism in Maize Seedlings. Journal of Agricultural and Food Chemistry, 2009, 57, 11267-11276.	2.4	49
68	Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 2009, 172, 237-244.	1.1	258
69	Protein Expression Changes in Maize Roots in Response to Humic Substances. Journal of Chemical Ecology, 2008, 34, 804-818.	0.9	59
70	Mineral Content and Root Respiration of <i>In Vitro</i> Grown Kiwifruit Plantlets Treated with Two Humic Fractions. Journal of Plant Nutrition, 2008, 31, 1074-1090.	0.9	8
71	Effects of an Alfalfa Protein Hydrolysate on the Gene Expression and Activity of Enzymes of the Tricarboxylic Acid (TCA) Cycle and Nitrogen Metabolism in Zea mays L Journal of Agricultural and Food Chemistry, 2008, 56, 11800-11808.	2.4	142
72	Biological Activity of Humic Substances Is Related to Their Chemical Structure. Soil Science Society of America Journal, 2007, 71, 75-85.	1.2	80

#	Article	IF	CITATIONS
73	Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology and Biochemistry, 2007, 39, 3138-3146.	4.2	164
74	CHARACTERISTICS OF SOIL ORGANIC MATTER IN A LIMNIC HISTOSOL OF THE ALPINE MORAINIC SYSTEM. Soil Science, 2006, 171, 527-540.	0.9	8
75	Stomatal Responses to Humic Substances and Auxin are Sensitive to Inhibitors of Phospholipase A2. Plant and Soil, 2006, 283, 175-185.	1.8	54
76	The Auxin-like Activity of Humic Substances is Related to Membrane Interactions in Carrot Cell Cultures. Journal of Chemical Ecology, 2006, 33, 115-129.	0.9	84
77	Chemical Characteristics and Biological Activity of Organic Substances Extracted from Soils by Root Exudates. Soil Science Society of America Journal, 2005, 69, 2012-2019.	1.2	57
78	The Effects Of Humic Substances On Pinus Callus Are Reversed By 2,4-Dichlorophenoxyacetic Acid. Journal of Chemical Ecology, 2005, 31, 577-590.	0.9	10
79	Soil organic matter properties after 40 years of different use of organic and mineral fertilisers. European Journal of Agronomy, 2004, 21, 357-367.	1.9	170
80	Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays L.). Journal of Experimental Botany, 2004, 55, 803-813.	2.4	226
81	Low-molecular-weight organic acids and hormone-like activity of dissolved organic matter in two forest soils in N Italy. Journal of Chemical Ecology, 2003, 29, 1549-1564.	0.9	20
82	Biological activity of soil organic matter mobilized by root exudates. Chemosphere, 2002, 46, 1075-1081.	4.2	59
83	Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry, 2002, 34, 1527-1536.	4.2	728
84	Hormoneâ€like activities of humic substances in different forest ecosystems. New Phytologist, 2002, 155, 393-402.	3.5	50
85	Hormoneâ€like activity of humic substances in Fagus sylvaticae forests. New Phytologist, 2001, 151, 647-657.	3.5	96
86	EFFECT OF HUMIC SUBSTANCES ON NITROGEN UPTAKE AND ASSIMILATION IN TWO SPECIES OF PINUS. Journal of Plant Nutrition, 2001, 24, 693-704.	0.9	36
87	Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry, 1999, 31, 1303-1311.	4.2	201
88	Biological activity of humic substances extracted from soils under different vegetation cover. Communications in Soil Science and Plant Analysis, 1999, 30, 621-634.	0.6	16
89	Soil Phosphorus Analysis as an Integrative Tool for Recognizing Buried Ancient Ploughsoils. Journal of Archaeological Science, 1999, 26, 343-352.	1.2	44
90	Trace elements in human scalp hair and soil in irian jaya. Biological Trace Element Research, 1998, 62, 199-212.	1.9	22

#	ARTICLE	IF	CITATIONS
91	IAA detection in humic substances. Soil Biology and Biochemistry, 1998, 30, 1199-1201.	4.2	107
92	Effect of molecular complexity and acidity of earthworm faeces humic fractions on glutamate dehydrogenase, glutamine synthetase, and phosphoenolpyruvate carboxylase in Daucus carota ? II cells. Biology and Fertility of Soils, 1996, 22, 83-88.	2.3	2
93	IAA Radioimmunoassay in humic substances using antibodies against ring-linked IAA. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1018-1019.	0.0	0
94	Amino acids of Proterozoic and Ordovician sulphide-coated grains from western Canada: Record of biologically-mediated pyrite precipitation. Chemical Geology, 1994, 111, 1-15.	1.4	12
95	Auxin-like effect of humic substances extracted from faeces of Allolobophora caliginosa and A. rosea. Soil Biology and Biochemistry, 1994, 26, 1341-1346.	4.2	70
96	Effect of earthworm humic substances on esterase and peroxidase activity during growth of leaf explants of Nicotiana plumbaginifolia. Biology and Fertility of Soils, 1993, 15, 127-131.	2.3	67
97	Structural characteristics of humic substances as related to nitrate uptake and growth regulation in plant systems. Soil Biology and Biochemistry, 1992, 24, 373-380.	4.2	180
98	Nitrate uptake and ATPase activity in oat seedlings in the presence of two humic fractions. Soil Biology and Biochemistry, 1991, 23, 833-836.	4.2	83
99	Action of soil humic matter on plant roots: Stimulation of ion uptake and effects on(Mg2++K+) ATPase activity. Science of the Total Environment, 1987, 62, 355-363.	3.9	59
100	Hormone-like effect and enhanced nitrate uptake induced by depolycondensed humic fractions obtained from Allolobophora rosea and A. caliginosa faeces. Biology and Fertility of Soils, 1987, 4, 115.	2.3	76
101	Antidote action of humic substances on atrazine inhibition of sulfate uptake in barley roots. Pesticide Biochemistry and Physiology, 1981, 15, 101-104.	1.6	25