Guang Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/615249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Legacy and Emerging Poly- and Perfluoroalkyl Substances in Finless Porpoises from East China Sea: Temporal Trends and Tissue-Specific Accumulation. Environmental Science & Technology, 2022, 56, 6113-6122.	4.6	37
2	A chromosomeâ€level genome of <i>Antechinus flavipes</i> provides a reference for an Australian marsupial genus with male death after mating. Molecular Ecology Resources, 2022, 22, 740-754.	2.2	12
3	Extensive Interspecific Gene Flow Shaped Complex Evolutionary History and Underestimated Species Diversity in Rapidly Radiated Dolphins. Journal of Mammalian Evolution, 2022, 29, 353-367.	1.0	6
4	Divergence of Tbx4 hindlimb enhancer HLEA underlies the hindlimb loss during cetacean evolution. Genomics, 2022, 114, 110292.	1.3	1
5	Evolutionary impacts of purine metabolism genes on mammalian oxidative stress adaptation. Zoological Research, 2022, 43, 241-254.	0.9	21
6	Decay of <i>TRPV3</i> as the genomic trace of epidermal structure changes in the landâ€ŧoâ€sea transition of mammals. Ecology and Evolution, 2022, 12, e8731.	0.8	4
7	<i>ACPT</i> gene is inactivated in mammalian lineages that lack enamel or teeth. PeerJ, 2021, 9, e10219.	0.9	16
8	Oxidative stress drives divergent evolution of the glutathione peroxidase (GPX) gene family in mammals. Integrative Zoology, 2021, 16, 696-711.	1.3	20
9	Rapid evolution and molecular convergence in cryptorchidism-related genes associated with inherently undescended testes in mammals. Bmc Ecology and Evolution, 2021, 21, 22.	0.7	4
10	Gene Duplication and Loss of <i>AANAT</i> in Mammals Driven by Rhythmic Adaptations. Molecular Biology and Evolution, 2021, 38, 3925-3937.	3.5	10
11	Comparative analyses of aging-related genes in long-lived mammals provide insights into natural longevity. Innovation(China), 2021, 2, 100108.	5.2	11
12	Enhanced Negative Regulation of the DHH Signaling Pathway as a Potential Mechanism of Ascrotal Testes in Laurasiatherians. Evolutionary Biology, 2021, 48, 335-345.	0.5	1
13	Comparative analysis of the superoxide dismutase gene family in Cetartiodactyla. Journal of Evolutionary Biology, 2021, 34, 1046-1060.	0.8	2
14	Genomic insights into body size evolution in Carnivora support Peto's paradox. BMC Genomics, 2021, 22, 429.	1.2	9
15	A Chromosome-Level Genome of the Agile Gracile Mouse Opossum (<i>Gracilinanus agilis</i>). Genome Biology and Evolution, 2021, 13, .	1.1	3
16	Molecular Evolution of Tooth-Related Genes Provides New Insights into Dietary Adaptations of Mammals. Journal of Molecular Evolution, 2021, 89, 458-471.	0.8	8
17	Molecular evolution of spermatogenesis-related genes in abdominal testicular mammals supports the cooling hypothesis. Journal of Genetics and Genomics, 2021, 48, 1139-1139.	1.7	1
18	Over-expression of the bottlenose dolphin Hoxd13 gene in zebrafish provides new insights into the cetacean flipper formation. Genomics, 2021, 113, 2925-2933.	1.3	2

GUANG YANG

#	Article	IF	CITATIONS
19	Regression of corpus luteum in cetaceans: A systematic review. Zoology, 2021, 149, 125960.	0.6	1
20	Comparative genomics reveals molecular mechanisms underlying health and reproduction in cryptorchid mammals. BMC Genomics, 2021, 22, 763.	1.2	2
21	Genomewide analysis of sperm whale E2 ubiquitin conjugating enzyme genes. Journal of Genetics, 2021, 100, 1.	0.4	0
22	Insights into Dietary Switch in Cetaceans: Evidence from Molecular Evolution of Proteinases and Lipases. Journal of Molecular Evolution, 2020, 88, 521-535.	0.8	4
23	Evidence of Echolocation in the Common Shrew from Molecular Convergence with Other Echolocating Mammals. Zoological Studies, 2020, 59, e4.	0.3	3
24	Insights into body size variation in cetaceans from the evolution of body-size-related genes. BMC Evolutionary Biology, 2019, 19, 157.	3.2	10
25	Accelerated evolution and diversifying selection drove the adaptation of cetacean bone microstructure. BMC Evolutionary Biology, 2019, 19, 194.	3.2	5
26	Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes and Genomics, 2019, 41, 1417-1430.	0.5	6
27	Divergent Evolution of TRC Genes in Mammalian Niche Adaptation. Frontiers in Immunology, 2019, 10, 871.	2.2	3
28	Contraction of the ROS Scavenging Enzyme Glutathione <i>S</i> -Transferase Gene Family in Cetaceans. G3: Genes, Genomes, Genetics, 2019, 9, 2303-2315.	0.8	13
29	Genomic Organization and Phylogeny of MHC Class II Loci in Cetaceans. Journal of Heredity, 2019, 110, 332-339.	1.0	6
30	Widespread positive selection on cetacean TLR extracellular domain. Molecular Immunology, 2019, 106, 135-142.	1.0	31
31	Survival rate and population size of Indoâ€Pacific humpback dolphins (<i>Sousa chinensis</i>) in Xiamen Bay, China. Marine Mammal Science, 2018, 34, 1018-1033.	0.9	13
32	Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nature Communications, 2018, 9, 1276.	5.8	80
33	Divergent Selection of Pattern Recognition Receptors in Mammals with Different Ecological Characteristics. Journal of Molecular Evolution, 2018, 86, 138-149.	0.8	22
34	Molecular Footprints of Aquatic Adaptation Including Bone Mass Changes in Cetaceans. Genome Biology and Evolution, 2018, 10, 967-975.	1.1	23
35	Determination of the effect of Pinellia ternata (Thunb.) Breit. on nervous system development by proteomics. Journal of Ethnopharmacology, 2018, 213, 221-229.	2.0	31
36	Evolutionary changes of <i>Hox</i> genes and relevant regulatory factors provide novel insights into mammalian morphological modifications. Integrative Zoology, 2018, 13, 21-35.	1.3	4

GUANG YANG

#	Article	IF	CITATIONS
37	Genomic organization and adaptive evolution of IGHC genes in marine mammals. Molecular Immunology, 2018, 99, 75-81.	1.0	29
38	Seasonal, Lunar and Tidal Influences on Habitat Use of Indo-Pacific Humpback Dolphins in Beibu Gulf, China. Zoological Studies, 2018, 57, e1.	0.3	4
39	Finless porpoises (<i>Neophocaena asiaeorientalis</i>) in the East China Sea: insights into feeding habits using morphological, molecular, and stable isotopic techniques. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1628-1645.	0.7	7
40	The Exonization and Functionalization of an Alu-J Element in the Protein Coding Region of Glycoprotein Hormone Alpha Gene Represent a Novel Mechanism to the Evolution of Hemochorial Placentation in Primates. Molecular Biology and Evolution, 2017, 34, 3216-3231.	3.5	15
41	Molecular evolution of globin genes in Gymnotiform electric fishes: relation to hypoxia tolerance. BMC Evolutionary Biology, 2017, 17, 51.	3.2	12
42	Trace element concentrations, risks and their correlation with metallothionein genes polymorphism: A case study of narrow-ridged finless porpoises (Neophocaena asiaeorientalis) in the East China Sea. Science of the Total Environment, 2017, 575, 628-638.	3.9	10
43	Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Frontiers in Genetics, 2017, 8, 205.	1.1	34
44	Genetic basis of brain size evolution in cetaceans: insights from adaptive evolution of seven primary microcephaly (MCPH) genes. BMC Evolutionary Biology, 2017, 17, 206.	3.2	12
45	Comparative genomics analyses of alpha-keratins reveal insights into evolutionary adaptation of marine mammals. Frontiers in Zoology, 2017, 14, 41.	0.9	18
46	Development of twenty microsatellite loci from the Tibetan ground tit (Parus humilis). Journal of Genetics, 2016, 93, 68-72.	0.4	0
47	Conservation Status of the Indo-Pacific Humpback Dolphin (Sousa chinensis) in the Northern Beibu Gulf, China. Advances in Marine Biology, 2016, 73, 119-139.	0.7	32
48	Evolution of Digestive Enzymes and RNASE1 Provides Insights into Dietary Switch of Cetaceans. Molecular Biology and Evolution, 2016, 33, 3144-3157.	3.5	40
49	Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving. Genome Biology and Evolution, 2016, 8, 827-839.	1.1	64
50	â€~Obesity' is healthy for cetaceans? Evidence from pervasive positive selection in genes related to triacylglycerol metabolism. Scientific Reports, 2015, 5, 14187.	1.6	38
51	Identification and characterization of twenty-seven short interspersed elements from three cetaceans. Journal of Genetics, 2015, 94, 56-61.	0.4	1
52	The world's second largest population of humpback dolphins in the waters of Zhanjiang deserves the highest conservation priority. Scientific Reports, 2015, 5, 8147.	1.6	40
53	The loss of taste genes in cetaceans. BMC Evolutionary Biology, 2014, 14, 218.	3.2	43
54	CATS derived SNPs discovery in the golden snub-nosed monkey (Rhinopithecus roxellanae). Conservation Genetics Resources, 2014, 6, 1-3.	0.4	0

GUANG YANG

#	Article	IF	CITATIONS
55	Whole-genome sequencing of the snub-nosed monkey provides insights into folivory and evolutionary history. Nature Genetics, 2014, 46, 1303-1310.	9.4	174
56	Comparative phylogeography of two marine species of crustacean: Recent divergence and expansion due to environmental changes. Gene, 2014, 550, 141-147.	1.0	12
57	Adaptive Evolution of Mitochondrial Energy Metabolism Genes Associated with Increased Energy Demand in Flying Insects. PLoS ONE, 2014, 9, e99120.	1.1	34
58	Positive selection at the ASPM gene coincides with brain size enlargements in cetaceans. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4433-4440.	1.2	28
59	Site fidelity and association patterns of Indo-Pacific humpback dolphins off the east coast of Zhanjiang, China. Acta Theriologica, 2012, 57, 99-109.	1.1	23
60	Genetic variation at mtDNA and microsatellite loci in Chinese longsnout catfish (Leiocassis) Tj ETQq0 0 0 rgBT /C	verlock 10	0 Tf 50 542 To

61	Phylogenomic analyses and improved resolution of Cetartiodactyla. Molecular Phylogenetics and Evolution, 2011, 61, 255-264.	1.2	84
62	A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evolutionary Biology, 2011, 11, 112.	3.2	171
63	Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences. BMC Evolutionary Biology, 2011, 11, 314.	3.2	24
64	Microsatellite variation and significant population genetic structure of endangered finless porpoises (Neophocaena phocaenoides) in Chinese coastal waters and the Yangtze River. Marine Biology, 2010, 157, 1453-1462.	0.7	17
65	Novel CHR-2 SINE subfamilies and t-SINEs identified in cetaceans using nonradioactive Southern blotting. Genes and Genomics, 2010, 32, 345-352.	0.5	2
66	Seven new dolphin mitochondrial genomes and a time-calibrated phylogeny of whales. BMC Evolutionary Biology, 2009, 9, 20.	3.2	106
67	Distribution and conservation of the Indo–Pacific humpback dolphin in China. Integrative Zoology, 2009, 4, 240-247.	1.3	50
68	A set of polymorphic dinucleotide and tetranucleotide microsatellite markers for the Indo-Pacific humpback dolphin (Sousa chinensis) and cross-amplification in other cetacean species. Conservation Genetics, 2009, 10, 697-700.	0.8	11
69	SNP discovery based on CATS and genotyping in the finless porpoise (Neophocaena phocaenoides). Conservation Genetics, 2009, 10, 2013-2019.	0.8	12

⁷⁰ Isolation and characterization of microsatellite loci in the longsnout catfish (Leiocassis) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50,142 Td (lo

71	Development of tetranucleotide microsatellite loci for the finless porpoise (Neophocaena) Tj ETQq1 1	0.784314 rgBT/Ov	erlock 10 Tf 5
72	Conservation Options for the Baiji: Time for Realism?. Conservation Biology, 2006, 20, 620-622.	2.4	23