Emily Blyth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6151918/publications.pdf

Version: 2024-02-01

75	1,794	22	40
papers	citations	h-index	g-index
80	80	80	2341 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Immunoprofiling reveals cell subsets associated with the trajectory of cytomegalovirus reactivation post stem cell transplantation. Nature Communications, 2022, 13, 2603.	5.8	8
2	Combining <scp>CD34</scp> + stem cell selection with prophylactic pathogen and leukemia directed Tâ€ell immunotherapy to simultaneously reduce graft versus host disease, infection and leukemia recurrence after allogeneic stem cell transplant. American Journal of Hematology, 2022, , .	2.0	1
3	Third-party CMV- and EBV-specific T-cells for first viral reactivation after allogeneic stem cell transplant. Blood Advances, 2022, 6, 4949-4966.	2.5	16
4	Successful treatment of CMV, EBV, and adenovirus tissue infection following HLAâ€mismatched allogeneic stem cell transplant using infusion of thirdâ€party T cells from multiple donors in addition to antivirals, rituximab, and surgery. Transplant Infectious Disease, 2021, 23, e13528.	0.7	6
5	Prophylactic antigenâ€specific Tâ€eells targeting seven viral and fungal pathogens after allogeneic haemopoietic stem cell transplant. Clinical and Translational Immunology, 2021, 10, e1249.	1.7	25
6	Identification of SARS-CoV-2 Nucleocapsid and Spike T-Cell Epitopes for Assessing T-Cell Immunity. Journal of Virology, 2021, 95, .	1.5	48
7	Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with <i>piggyBac</i> -modified CD19 CAR T cells. Blood, 2021, 138, 1504-1509.	0.6	86
8	Investigation of product-derived lymphoma following infusion of <i>piggyBac</i> -modified CD19 chimeric antigen receptor T cells. Blood, 2021, 138, 1391-1405.	0.6	87
9	Successful treatment of Epstein–Barr virus–associated primary central nervous system lymphoma due to post-transplantation lymphoproliferative disorder, with ibrutinib and third-party Epstein–Barr virus–specific T cells. American Journal of Transplantation, 2021, 21, 3465-3471.	2.6	13
10	Cytomegalovirus Infections in Children with Primary and Secondary Immune Deficiencies. Viruses, 2021, 13, 2001.	1.5	13
11	Beyond antivirals: virus-specific T-cell immunotherapy for BK virus haemorrhagic cystitis and JC virus progressive multifocal leukoencephalopathy. Current Opinion in Infectious Diseases, 2021, 34, 627-634.	1.3	6
12	Early Administration of Partially HLA Matched Third Party Virus-Specific T-Cells in Conjunction with Antiviral Treatment for Initial Viral Infection after Allogeneic Stem Cell Transplant Is Safe and Leads to High Rates of Viral Control. Blood, 2021, 138, 255-255.	0.6	O
13	treekoR: identifying cellular-to-phenotype associations by elucidating hierarchical relationships in high-dimensional cytometry data. Genome Biology, 2021, 22, 324.	3.8	3
14	A Phase-lb/II Clinical Evaluation of Ponatinib in Combination with Azacitidine in FLT3-ITD and CBL-Mutant Acute Myeloid Leukemia (PON-AZA study). Blood, 2021, 138, 2350-2350.	0.6	4
15	Pre―and postâ€bone marrow harvest anaemia is associated with lower CD34+ stem cell collection, high harvest volume and female gender. Internal Medicine Journal, 2020, 50, 299-306.	0.5	1
16	<i>Ex vivo</i> enrichment of PRAME antigenâ€specific T cells for adoptive immunotherapy using CD137 activation marker selection. Clinical and Translational Immunology, 2020, 9, e1200.	1.7	8
17	Managing haematology and oncology patients during the <scp>COVID</scp> â€19 pandemic: interim consensus guidance. Medical Journal of Australia, 2020, 212, 481-489.	0.8	107
18	Whole-Genome Approach to Assessing Human Cytomegalovirus Dynamics in Transplant Patients Undergoing Antiviral Therapy. Frontiers in Cellular and Infection Microbiology, 2020, 10, 267.	1.8	17

#	Article	IF	CITATIONS
19	Mass cytometry reveals immune signatures associated with cytomegalovirus (CMV) control in recipients of allogeneic haemopoietic stem cell transplant and CMVâ€specific T cells. Clinical and Translational Immunology, 2020, 9, e1149.	1.7	18
20	Unrelated Donor Transplant Recipients Given Thymoglobuline Have Superior GRFS When Compared to Matched Related Donor Recipients Undergoing Transplantation without ATG. Biology of Blood and Marrow Transplantation, 2020, 26, 1868-1875.	2.0	8
21	Profiling the Blood Compartment of Hematopoietic Stem Cell Transplant Patients During Human Cytomegalovirus Reactivation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 607470.	1.8	4
22	Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state. ELife, 2020, 9, .	2.8	46
23	Donor-Derived T-Cells Specific for WT1 and PRAME in Combination with T-Cells Specific for Multiple Pathogens for Prevention of Relapse and Infection after Haemopoietic Stem Cell Transplant (HSCT) for Acute Myeloid Leukaemia (AML) or High-Risk Myelodysplasia (MDS) - (The INTACT Trial). Blood, 2020, 136, 38-38.	0.6	0
24	Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Frontiers in Microbiology, 2019, 10, 1186.	1.5	105
25	Pathogen-Specific T Cells Beyond CMV, EBV and Adenovirus. Current Hematologic Malignancy Reports, 2019, 14, 247-260.	1.2	8
26	Restriction of Human Cytomegalovirus Infection by Galectin-9. Journal of Virology, 2019, 93, .	1.5	18
27	Administration of Third-Party Virus-Specific T-Cells (VST) at the Time of Initial Therapy for Infection after Haemopoietic Stem Cell Transplant Is Safe and Associated with Favourable Clinical Outcomes (the R3ACT-Quickly trial). Blood, 2019, 134, 251-251.	0.6	3
28	Ultra-Sensitive Droplet Digital PCR for the Assessment of Microchimerism in Cellular Therapies. Biology of Blood and Marrow Transplantation, 2018, 24, 1069-1078.	2.0	36
29	Adjuvant Peptide Pulsed Dendritic Cell Vaccination in Addition to T Cell Adoptive Immunotherapy for Cytomegalovirus Infection in Allogeneic Hematopoietic Stem Cell Transplantation Recipients. Biology of Blood and Marrow Transplantation, 2018, 24, 71-77.	2.0	13
30	Establishment and Operation of a Third-Party Virus-Specific T Cell Bank within an Allogeneic Stem Cell Transplant Program. Biology of Blood and Marrow Transplantation, 2018, 24, 2433-2442.	2.0	50
31	Mass Cytometry for the Assessment of Immune Reconstitution After Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2018, 9, 1672.	2.2	46
32	Rescue haploidentical peripheral blood stem cell transplantation for engraftment failure: a singleâ€entre case series. Internal Medicine Journal, 2018, 48, 988-991.	0.5	5
33	Co-Administration of 3rdparty Partially HLA Matched Cytomegalovirus Specific T Cells with Initial Antiviral Pharmacotherapy for Post-Transplant Viral Reactivation. Blood, 2018, 132, 2051-2051.	0.6	0
34	Unique case involving chromosomes 3 and 11 in myelodysplastic syndromes (MDS) confirmed by microarray studies. Pathology, 2017, 49, S106.	0.3	0
35	Cellular therapy for multiple pathogen infections after hematopoietic stem cell transplant. Cytotherapy, 2017, 19, 1284-1301.	0.3	17
36	Herpes simplex virus type 1 (HSV-1) specific T-cell generation from HLA-A1- and HLA-A2-positive donors for adoptive immunotherapy. Cytotherapy, 2017, 19, 107-118.	0.3	14

#	Article	lF	CITATIONS
37	Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Advances, 2017, 1, 2193-2205.	2.5	115
38	Third-Party Virus-Specific T Cells (VST) Are Efficacious in the Treatment of Refractory Infection Post-HSCT, However Other Cell-Mediated Immune Deficiencies Appear to Persist. Biology of Blood and Marrow Transplantation, 2016, 22, S147.	2.0	1
39	Multi-Pathogen Cytotoxic T-Lymphocytes to Enhance Immunity Post-Allogeneic Stem Cell Transplantation (HSCT). Cytotherapy, 2016, 18, S14.	0.3	O
40	CMV-specific immune reconstitution following allogeneic stem cell transplantation. Virulence, 2016, 7, 967-980.	1.8	45
41	Infusion of Unrelated-Donor Partially HLA-Matched Cells Results in Detectable Microchimerism in Patients with Acute Myeloid Leukemia: Early Post-Infusion Reactions Are Common but Self-Limiting. Blood, 2016, 128, 3405-3405.	0.6	1
42	449. Multipathogen-Specific T Cells for Immune Reconstitution – A Decade of Manufacturing Development and Clinical Use. Molecular Therapy, 2015, 23, S178.	3.7	0
43	Moving towards pathogenâ€specific T cells postâ€stem cell transplant as standard of care. ISBT Science Series, 2015, 10, 349-356.	1.1	0
44	Single-Agent High-Dose Cyclophosphamide for Graft-versus-Host Disease Prophylaxis in Human Leukocyte Antigen–Matched Reduced-Intensity Peripheral Blood Stem Cell Transplantation Results in an Unacceptably High Rate of Severe Acute Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 941-944.	2.0	48
45	Low-cost generation of Good Manufacturing Practice–grade CD19-specific chimeric antigen receptor–expressing T cells using piggyBac gene transfer and patient-derived materials. Cytotherapy, 2015, 17, 1251-1267.	0.3	75
46	Influence of Stem Cell Source on Outcomes of Allogeneic Reduced-Intensity Conditioning Therapy Transplants UsingÂHaploidentical Related Donors. Biology of Blood and Marrow Transplantation, 2015, 21, 1641-1645.	2.0	38
47	Adoptive T Cell Immunotherapy for Treatment of Ganciclovir-Resistant Cytomegalovirus Disease in a Renal Transplant Recipient. American Journal of Transplantation, 2015, 15, 827-832.	2.6	54
48	Infusion of third-party partially HLA-matched virus-specific T cells to treat refractory viral infections. Cytotherapy, 2015, 17, S8-S9.	0.3	0
49	Addition of varicella zoster virus–specific T cells to cytomegalovirus, Epstein-Barr virus and adenovirus tri-specific T cells as adoptive immunotherapy in patients undergoing allogeneic hematopoietic stem cell transplantation. Cytotherapy, 2015, 17, 1406-1420.	0.3	53
50	A fatal case of acute HHV-6 myocarditis following allogeneic haemopoietic stem cell transplantation. Journal of Clinical Virology, 2015, 72, 82-84.	1.6	5
51	Third-Party Donor Virus-Specific T Cells Are Efficacious in the Treatment of Refractory Viral Infection Following Allogeneic HSCT, but May Not Persist Post-Infusion. Blood, 2015, 126, 623-623.	0.6	6
52	Therapeutic Infusion of Partially HLA-Matched Third-Party Virus-Specific T Cells in HSCT Patients with Refractory Viral Infection. Blood, 2014, 124, 3835-3835.	0.6	0
53	Cytomegalovirus-Specific Cytotoxic T Lymphocytes Can Be Efficiently Expanded from Granulocyte Colony-Stimulating Factor–Mobilized Hemopoietic Progenitor Cell Products ExÂVivo and Safely Transferred to Stem Cell Transplantation Recipients to Facilitate Immune Reconstitution. Biology of Blood and Marrow Transplantation, 2013, 19, 725-734.	2.0	34
54	Prophylactic infusion of multi-virus specific TÂcells for management of viral reactivation andÂinfection in patients post allogeneic hematopoietic stem cell transplantation (HSCT). Cytotherapy, 2013, 15, S10.	0.3	0

#	Article	IF	CITATIONS
55	Establishment of an australian bank of third party antiviral cytotoxic T lymphocytes (CTL). Cytotherapy, 2013, 15, S38.	0.3	0
56	Reduced Intensity Transplants Using G-CSF-Mobilized Hemopoietic Cells From Haploidentical Related Donors. Biology of Blood and Marrow Transplantation, 2013, 19, S283.	2.0	2
57	Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood, 2013, 121, 3745-3758.	0.6	219
58	Prophylactic Infusion Of Multi-Virus Specific T Cells For Management Of Viral Reactivation and Infection In Patients Post Allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Blood, 2013, 122, 4498-4498.	0.6	0
59	In vitro generation of influenza-specific polyfunctional CD4+ T cells suitable for adoptive immunotherapy. Cytotherapy, 2012, 14, 182-193.	0.3	16
60	Clinical-grade varicella zoster virus-specific T cells produced for adoptive immunotherapy in hemopoietic stem cell transplant recipients. Cytotherapy, 2012, 14, 724-732.	0.3	24
61	Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy, 2012, 14, 1119-1130.	0.3	29
62	Cytotoxic T Cells Specific for Adenovirus, BKV, CMV, EBV and VZV Produced for Clinical Use in Immune Reconstitution Post Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2011, 17, S211-S212.	2.0	0
63	Cytomegalovirus (CMV) pp65 Specific T Cells Expanded From Mobilised Peripheral Blood Stem Cell (PBSC) Collections for Prophylactic Adoptive Immunotherapy. Biology of Blood and Marrow Transplantation, 2011, 17, S212.	2.0	0
64	BK Virus Specific T Cells Expanded Ex Vivo for Use in Cellular Therapy Show Multiple Antigen Specificity and Polyfunctional Th1 Responses. Biology of Blood and Marrow Transplantation, 2011, 17, S214.	2.0	0
65	The Generation of Clinical Grade Aspergillus Fumigatus (AF) Specific Immune Cells for Adoptive Immunotherapy. Biology of Blood and Marrow Transplantation, 2011, 17, S215.	2.0	0
66	BK Virus-Specific T Cells for Use in Cellular Therapy Show Specificity to Multiple Antigens and Polyfunctional Cytokine Responses. Transplantation, 2011, 92, 1077-1084.	0.5	61
67	In Vitro Generation of Influenza-Virus Specific T Cells for Adoptive Immunotherapy,. Blood, 2011, 118, 4040-4040.	0.6	0
68	Cytotoxic T Cells Specific for Adenovirus, BK Virus, Cytomegalovirus, Epstein Barr Virus and Varicella Zoster Virus Produced for Clinical Use In Immune Reconstitution Post Allogeneic Stem Cell Transplantation. Blood, 2010, 116, 830-830.	0.6	0
69	Epstein-Barr Virus Specific Cytotoxic T Cells for Clinical Use in Immune Reconstitution Post Haemopoietic Stem Cell Transplant Blood, 2009, 114, 2435-2435.	0.6	0
70	BK Virus Specific Cytotoxic T Cells Expanded for Clinical Use Exhibit Multiple Cytokine Functions and Individual Variation in Antigen Specificity Blood, 2009, 114, 2437-2437.	0.6	0
71	Prophylactic infusion of cytomegalovirus-specific cytotoxic T lymphocytes stimulated with Ad5f35pp65 gene-modified dendritic cells after allogeneic hemopoietic stem cell transplantation. Blood, 2008, 112, 3974-3981.	0.6	108
72	Protein Z is reduced in chronic kidney disease and not elevated in patients on haemodialysis. Blood Coagulation and Fibrinolysis, 2008, 19, 23-25.	0.5	2

EMILY BLYTH

#	Article	lF	CITATIONS
73	CMV Specific T Cells for Adoptive Transfer Exhibit Multiple Effector Functions Associated with Protective Immunity Including the Concurrent Production of Cytokines and Cytolytic Activity. Blood, 2008, 112, 3481-3481.	0.6	0
74	Letters to the Editor. Leukemia and Lymphoma, 2006, 47, 747-775.	0.6	14
75	A novel cytogenetic abnormality in Burkitt lymphoma associated with treatment resistant disease. International Journal of Laboratory Hematology, 2005, 27, 328-330.	0.2	3