
Hong Heng See

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6151905/publications.pdf Version: 2024-02-01

HONG HENC SEE

#	Article	IF	CITATIONS
1	Myths and Facts Regarding Particle Size Analysis of Pharmaceutical Powders. Recent Advances in Drug Delivery and Formulation, 2022, 16, 82-83.	0.3	Ο
2	A review of recent advances in microsampling techniques of biological fluids for therapeutic drug monitoring. Journal of Chromatography A, 2021, 1635, 461731.	1.8	43
3	Online sample preconcentration techniques in nonaqueous capillary and microchip electrophoresis. Journal of Chromatography A, 2021, 1638, 461868.	1.8	18
4	Mixed Matrix Membrane Tip Extraction Coupled with UPLC–MS/MS for the Monitoring of Nonsteroidal Anti-Inflammatory Drugs in Water Samples. Separations, 2020, 7, 19.	1.1	10
5	Automated Mixed Matrix Membrane Microextraction Prior to Liquid Chromatography for the Determination of Chlorophenoxy Acid Herbicides in Sewage Water Samples. Chromatographia, 2020, 83, 497-505.	0.7	2
6	Inâ€Transit Electroextraction of Smallâ€Molecule Pharmaceuticals from Blood. Angewandte Chemie, 2019, 131, 3830-3834.	1.6	0
7	Inâ€Transit Electroextraction of Smallâ€Molecule Pharmaceuticals from Blood. Angewandte Chemie - International Edition, 2019, 58, 3790-3794.	7.2	10
8	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018). Electrophoresis, 2019, 40, 17-39.	1.3	113
9	Rapid quantification of quinine by multiâ€stacking in a portable microchip electrophoresis system. Electrophoresis, 2019, 40, 455-461.	1.3	13
10	Electrophoresis: Principles of Capillary Electrophoresis. , 2018, , 328-328.		1
11	Monitoring of tobramycin in human plasma via mixed matrix membrane extraction prior to capillary electrophoresis with contactless conductivity detection. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 184-188.	1.4	19
12	Flow Injection Analysis with Direct UV Detection Following Electric Field Driven Membrane Extraction. Molecules, 2018, 23, 1000.	1.7	4
13	Electrophoretic separations on paper: Past, present, and future-A review. Analytica Chimica Acta, 2017, 985, 7-23.	2.6	37
14	Integration of the free liquid membrane into electrokinetic supercharging – capillary electrophoresis for the determination of cationic herbicides in environmental water samples. Journal of Chromatography A, 2017, 1481, 145-151.	1.8	31
15	Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy. Journal of Chromatography A, 2017, 1485, 142-146.	1.8	37
16	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis, 2017, 38, 33-59.	1.3	87
17	Simultaneous electromembrane extraction of cationic and anionic herbicides across hollow polymer inclusion membranes with a bubbleless electrode. Journal of Chromatography A, 2017, 1504, 9-16.	1.8	33
18	Carbonaceous nanomaterials immobilised mixed matrix membrane microextraction for the determination of polycyclic aromatic hydrocarbons in sewage pond water samples. Analytica Chimica Acta, 2016, 931, 57-63.	2.6	24

HONG HENG SEE

#	Article	IF	CITATIONS
19	Multistacking from Two Sample Streams in Nonaqueous Microchip Electrophoresis. Analytical Chemistry, 2016, 88, 9915-9919.	3.2	24
20	Electrokinetic supercharging in nonaqueous capillary electrophoresis for online preconcentration and determination of tamoxifen and its metabolites in human plasma. Journal of Chromatography A, 2016, 1461, 185-191.	1.8	21
21	Field-enhanced sample injection-micelle to solvent stacking in nonaqueous capillary electrophoresis. Talanta, 2016, 161, 165-169.	2.9	20
22	Determination of tamoxifen and its metabolites using micelle to solvent stacking in nonaqueous capillary electrophoresis. Electrophoresis, 2016, 37, 1166-1169.	1.3	21
23	Determination of tamoxifen and its metabolites in human plasma by nonaqueous capillary electrophoresis with contactless conductivity detection. Electrophoresis, 2015, 36, 2713-2719.	1.3	13
24	Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014). Electrophoresis, 2015, 36, 36-61.	1.3	138
25	Development and evaluation of electromembrane extraction across a hollow polymer inclusion membrane. Journal of Chromatography A, 2015, 1406, 34-39.	1.8	44
26	Electro-driven extraction of low levels of lipophilic organic anions and cations across plasticized cellulose triacetate membranes: Effect of the membrane composition. Journal of Membrane Science, 2014, 450, 147-152.	4.1	23
27	Automated Electric-Field-Driven Membrane Extraction System Coupled to Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 2014, 86, 8665-8670.	3.2	33
28	Rapid separation of fatty acids using a poly(vinyl alcohol) coated capillary in nonaqueous capillary electrophoresis with contactless conductivity detection. Electrophoresis, 2013, 34, 2072-2077.	1.3	26
29	Study on the effects of electrolytes and solvents in the determination of quaternary ammonium ions by nonaqueous capillary electrophoresis with contactless conductivity detection. Electrophoresis, 2013, 34, 317-323.	1.3	19
30	Electro-driven extraction across a polymer inclusion membrane in a flow-through cell. Journal of Chromatography A, 2013, 1300, 79-84.	1.8	29
31	A simple microextraction and preconcentration approach based on a mixed matrix membrane. Analytica Chimica Acta, 2013, 783, 24-30.	2.6	27
32	Electric Field Driven Extraction of Inorganic Anions Across a Polymer Inclusion Membrane. Electroanalysis, 2013, 25, 1879-1886.	1.5	23
33	Determination of creatine and phosphocreatine in muscle biopsy samples by capillary electrophoresis with contactless conductivity detection. Analytica Chimica Acta, 2012, 727, 78-82.	2.6	14
34	Determination of free and total valproic acid in human plasma by capillary electrophoresis with contactless conductivity detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 907, 74-78.	1.2	29
35	Electric Field-Driven Extraction of Lipophilic Anions across a Carrier-Mediated Polymer Inclusion Membrane. Analytical Chemistry, 2011, 83, 7507-7513.	3.2	63
36	Rapid and direct determination of glyphosate, glufosinate, and aminophosphonic acid by online preconcentration CE with contactless conductivity detection. Electrophoresis, 2010, 31, 575-582.	1.3	59

HONG HENG SEE

#	Article	IF	CITATIONS
37	Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. Journal of Chromatography A, 2010, 1217, 1767-1772.	1.8	109
38	Dynamic supported liquid membrane tip extraction of glyphosate and aminomethylphosphonic acid followed by capillary electrophoresis with contactless conductivity detection. Journal of Chromatography A, 2010, 1217, 5832-5838.	1.8	33
39	Determination of pesticides in water by cone-shaped membrane protected liquid phase microextraction prior to micro-liquid chromatography. Journal of Chromatography A, 2007, 1152, 215-219.	1.8	42
40	Determination of carotene, tocopherols and tocotrienols in residue oil from palm pressed fiber using pressurized liquid extraction-normal phase liquid chromatography. Analytica Chimica Acta, 2005, 538, 71-76.	2.6	65
41	High Temperature Liquid Chromatography of Tocol-Derivatives on Polybutadiene-Coated Zirconia Stationary Phases. Chromatographia, 2005, 61, 567-571.	0.7	7
42	High Temperature Liquid Chromatography on a Poly(Styreneâ€Divinylbenzene) Stationary Phase. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 3065-3076.	0.5	19
43	High temperature liquid chromatography of triazole fungicides on polybutadiene-coated zirconia stationary phase. Journal of Chromatography A, 2004, 1059, 95-101.	1.8	49
44	Improving the water quality of ironâ€containing ponds using fermented kitchen wastes. Environmental Quality Management, 0, , .	1.0	2