
Michael King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6151407/publications.pdf Version: 2024-02-01

MICHAEL KINC

#	Article	IF	CITATIONS
1	Intense noise exposure alters peripheral vestibular structures and physiology. Journal of Neurophysiology, 2020, 123, 658-669.	1.8	17
2	Exposure to Intense Noise Causes Vestibular Loss. Military Medicine, 2020, 185, 454-461.	0.8	5
3	Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats. Journal of Neurophysiology, 2018, 119, 662-667.	1.8	14
4	The Interaction of Pre-programmed Eye Movements With the Vestibulo-Ocular Reflex. Frontiers in Systems Neuroscience, 2018, 12, 4.	2.5	11
5	Vestibular dysfunction in the adult CBA/CaJ mouse after lead and cadmium treatment. Environmental Toxicology, 2017, 32, 869-876.	4.0	16
6	Monothermal Caloric Screening to Improve Healthcare Value. Ear and Hearing, 2016, 37, e188-e193.	2.1	12
7	Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs. Hearing Research, 2015, 328, 102-112.	2.0	10
8	Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. Journal of Physiology, 2014, 592, 1619-1636.	2.9	138
9	Scaling of compensatory eye movements during translations: Virtual versus real depth. Neuroscience, 2013, 246, 73-81.	2.3	2
10	Getting ahead of oneself: Anticipation and the vestibulo-ocular reflex. Neuroscience, 2013, 236, 210-219.	2.3	12
11	Association Between Hearing Loss and Saccular Dysfunction in Older Individuals. Otology and Neurotology, 2012, 33, 1586-1592.	1.3	72
12	Galvanic stimulation of the vestibular periphery in guinea pigs during passive whole body rotation and self-generated head movement. Journal of Neurophysiology, 2012, 107, 2260-2270.	1.8	10
13	Binocular coordination of eye movements – Hering's Law of equal innervation or uniocular control?. European Journal of Neuroscience, 2011, 33, 2139-2146.	2.6	63
14	Anticipatory eye movements stabilize gaze during selfâ€generated head movements. Annals of the New York Academy of Sciences, 2011, 1233, 219-225.	3.8	14
15	Eye–head coordination in the guinea pig I. Responses to passive whole-body rotations. Experimental Brain Research, 2010, 205, 395-404.	1.5	9
16	Eye-head coordination in the guinea pig II. Responses to self-generated (voluntary) head movements. Experimental Brain Research, 2010, 205, 445-454.	1.5	17
17	Predictive disjunctive pursuit of virtual images perceived to move in depth. Progress in Brain Research, 2008, 171, 451-457.	1.4	0
18	The role of bone morphogenetic protein 4 in inner ear development and function. Hearing Research, 2007, 225, 71-79.	2.0	24

MICHAEL KING

#	Article	IF	CITATIONS
19	Responses of Monkey Vestibular-Only Neurons to Translation and Angular Rotation. Journal of Neurophysiology, 2006, 96, 2915-2930.	1.8	33
20	Tests of Models for Saccade–Vergence Interaction using Novel Stimulus Conditions. Biological Cybernetics, 2006, 95, 143-157.	1.3	19
21	Vestibulo-collic reflex (VCR) in mice. Experimental Brain Research, 2005, 167, 103-107.	1.5	23
22	Rapid Motor Learning in the Translational Vestibulo-Ocular Reflex. Journal of Neuroscience, 2003, 23, 4288-4298.	3.6	25
23	Attentional sensitivity and asymmetries of vertical saccade generation in monkey. Vision Research, 2002, 42, 771-779.	1.4	44
24	Rapid Adaptation of Translational Vestibuloâ€Ocular Reflex: Independence of Retinal Slip. Annals of the New York Academy of Sciences, 2002, 956, 558-560.	3.8	3
25	Neural Basis of Disjunctive Eye Movements. Annals of the New York Academy of Sciences, 2002, 956, 273-283.	3.8	46
26	Rapid Adaptation of Translational Vestibuloâ€Ocular Reflex: Time Course, Consolidation, and Specificity. Annals of the New York Academy of Sciences, 2002, 956, 555-557.	3.8	3
27	Responses of rostral fastigial neurons to linear acceleration in an alert monkey. Experimental Brain Research, 2001, 139, 111-115.	1.5	29
28	New ideas about binocular coordination of eye movements: Is there a chameleon in the primate family tree?. The Anatomical Record, 2000, 261, 153-161.	1.8	64
29	Stereotactic Posterioventral Pallidotomy Improves Balance Control as Assessed by Computerized Posturography. Stereotactic and Functional Neurosurgery, 1999, 72, 233-240.	1.5	6
30	Monocular and binocular mechanisms in saccade generation. Behavioral and Brain Sciences, 1999, 22, 704-705.	0.7	0
31	Premotor commands encode monocular eye movements. Nature, 1998, 393, 692-695.	27.8	173
32	Binocular eye movements not coordinated during REM sleep. Experimental Brain Research, 1997, 117, 153-160.	1.5	42
33	Ocular Selectivity of Units in Oculomotor Pathways. Annals of the New York Academy of Sciences, 1996, 781, 724-728.	3.8	25
34	Behavior and physiology of the macaque vestibulo-ocular reflex response to sudden off-axis rotation: Computing eye translation. Brain Research Bulletin, 1996, 40, 293-301.	3.0	27
35	Initiation of disjunctive smooth pursuit in monkeys: Evidence that Hering's law of equal innervation is not obeyed by the smooth pursuit system. Vision Research, 1995, 35, 3389-3400.	1.4	57
36	Eye Position Signals in the Vestibular Nuclei: Consequences for Models of Integrator Function. Journal of Vestibular Research: Equilibrium and Orientation, 1994, 4, 391-400.	2.0	38

MICHAEL KING

#	Article	IF	CITATIONS
37	Eye Position Signals in the Abducens and Oculomotor Nuclei of Monkeys During Ocular Convergence. Journal of Vestibular Research: Equilibrium and Orientation, 1994, 4, 401-408.	2.0	30
38	Magnocellular or parvocellular lesions in the lateral geniculate nucleus of monkeys cause minor deficits of smooth pursuit eye movements. Vision Research, 1994, 34, 223-239.	1.4	20
39	Eye position signals in the vestibular nuclei: consequences for models of integrator function. Journal of Vestibular Research: Equilibrium and Orientation, 1994, 4, 391-400.	2.0	11
40	Eye position signals in the abducens and oculomotor nuclei of monkeys during ocular convergence. Journal of Vestibular Research: Equilibrium and Orientation, 1994, 4, 401-8.	2.0	3
41	Changes in vestibulo-ocular reflex (VOR) anticipate changes in vergence angle in monkey. Vision Research, 1992, 32, 569-575.	1.4	53
42	Effect of viewing distance and location of the axis of head rotation on the monkey's vestibuloocular reflex. I. Eye movement responses. Journal of Neurophysiology, 1992, 67, 861-874.	1.8	147
43	Dynamics and efficacy of saccade-facilitated vergence eye movements in monkeys. Journal of Neurophysiology, 1992, 68, 1248-1260.	1.8	125
44	Vertical vestibuloocular reflex in cat: asymmetry and adaptation. Journal of Neurophysiology, 1988, 59, 279-298.	1.8	84
45	Oblique saccadic eye movements of primates. Journal of Neurophysiology, 1986, 56, 769-784.	1.8	101
46	Vertical eye movement-related responses of neurons in midbrain near intestinal nucleus of Cajal Journal of Neurophysiology, 1981, 46, 549-562.	1.8	156
47	Afferent and efferent connections of cat omnipause neurons. Experimental Brain Research, 1980, 38, 395-403.	1.5	177
48	Synaptic organization of frontal eye field and vestibular afferents to interstitial nucleus of Cajal in the cat. Journal of Neurophysiology, 1980, 43, 912-928.	1.8	79
49	Reticular control of vertical saccadic eye movements by mesencephalic burst neurons. Journal of Neurophysiology, 1979, 42, 861-876.	1.8	244
50	Connections of behaviorally identified cat omnipause neurons. Experimental Brain Research, 1978, 32, 435-8.	1.5	26
51	Die unterschiedliche Rolle des hinteren Lägsbündels bei horizontalen und vertikalen willkürlich und vestibuläausgelösten Augenbewegungen: Einzelfaserableitungen und Läonsstudien beim Affen. Symposion Der Deutschen Ophthalmologischen Gesellschaft, 1978, , 153-157.	0.1	1
52	Responses of fibers in medial longitudinal fasciculus (MLF) of alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. Journal of Neurophysiology, 1976, 39, 1135-1149.	1.8	215
53	Effect of mean reaction time on saccadic responses to two-step stimuli with horizontal and vertical components. Vision Research, 1975, 15, 1021-1025.	1.4	77