Jesus Aguirre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6151070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Osmolyte Signatures for the Protection of Aspergillus sydowii Cells under Halophilic Conditions and Osmotic Shock. Journal of Fungi (Basel, Switzerland), 2021, 7, 414.	3.5	9

H2O2 Induces Major Phosphorylation Changes in Critical Regulators of Signal Transduction, Gene Expression, Metabolism and Developmental Networks in Aspergillus nidulans. Journal of Fungi (Basel,) Tj ETQq0 0 03:gBT /Over200ck 10 Tf

3	Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biology, 2020, 124, 253-262.	2.5	33
4	On the use of n-octyl gallate and salicylhydroxamic acid to study the alternative oxidase role. Archives of Biochemistry and Biophysics, 2020, 694, 108603.	3.0	0
5	DnmA and FisA Mediate Mitochondria and Peroxisome Fission, and Regulate Mitochondrial Function, ROS Production and Development in Aspergillus nidulans. Frontiers in Microbiology, 2020, 11, 837.	3.5	13
6	Postponing the IV International Symposium on Fungal Stress (ISFUS) and the XIII International Fungal Biology Conference (IFBC) due to COVID-19. Fungal Biology, 2020, 124, 536.	2.5	2
7	Neurospora crassa NADPH Oxidase NOX-1 Is Localized in the Vacuolar System and the Plasma Membrane. Frontiers in Microbiology, 2019, 10, 1825.	3.5	16
8	Differential tetraspanin genes expression and subcellular localization during mutualistic interactions in Phaseolus vulgaris. PLoS ONE, 2019, 14, e0219765.	2.5	13
9	Emerging roles of tetraspanins in plant inter-cellular and inter-kingdom communication. Plant Signaling and Behavior, 2019, 14, e1581559.	2.4	26
10	Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiology and Molecular Biology Reviews, 2018, 82, .	6.6	231
11	SakA and MpkC Stress MAPKs Show Opposite and Common Functions During Stress Responses and Development in Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 2518.	3.5	53
12	The Complexity of Fungal Vision. , 2017, , 441-461.		0
13	NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans. Frontiers in Microbiology, 2017, 8, 516.	3.5	35
14	The Adenylate-Forming Enzymes AfeA and TmpB Are Involved in Aspergillus nidulans Self-Communication during Asexual Development. Frontiers in Microbiology, 2016, 7, 353.	3.5	5
15	The Complexity of Fungal Vision. Microbiology Spectrum, 2016, 4, .	3.0	46
16	The SrkA Kinase Is Part of the SakA Mitogen-Activated Protein Kinase Interactome and Regulates Stress Responses and Development in Aspergillus nidulans. Eukaryotic Cell, 2015, 14, 495-510.	3.4	66
17	New Insights Into the Roles of NADPH Oxidases in Sexual Development and Ascospore Germination in <i>Sordaria macrospora</i> . Genetics, 2014, 196, 729-744.	2.9	86
18	FlbD, a Myb Transcription Factor of Aspergillus nidulans, Is Uniquely Involved in both Asexual and Sexual Differentiation. Eukaryotic Cell, 2012, 11, 1132-1142.	3.4	54

Jesus Aguirre

#	Article	IF	CITATIONS
19	Role of the 4-Phosphopantetheinyl Transferase of <i>Trichoderma virens</i> in Secondary Metabolism and Induction of Plant Defense Responses. Molecular Plant-Microbe Interactions, 2011, 24, 1459-1471.	2.6	89
20	<i>Aspergillus nidulans</i> transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Molecular Microbiology, 2011, 80, 436-454.	2.5	154
21	Nox enzymes from fungus to fly to fish and what they tell us about Nox function in mammals. Free Radical Biology and Medicine, 2010, 49, 1342-1353.	2.9	143
22	Sfp-Type 4′-Phosphopantetheinyl Transferase Is Indispensable for Fungal Pathogenicity. Plant Cell, 2009, 21, 3379-3396.	6.6	59
23	Chapter 15 Cell differentiation as a response to oxidative stress. British Mycological Society Symposia Series, 2008, , 235-257.	0.5	7
24	NADPH Oxidases NOX-1 and NOX-2 Require the Regulatory Subunit NOR-1 To Control Cell Differentiation and Growth in <i>Neurospora crassa</i> . Eukaryotic Cell, 2008, 7, 1352-1361.	3.4	193
25	Response Regulators SrrA and SskA Are Central Components of a Phosphorelay System Involved in Stress Signal Transduction and Asexual Sporulation in <i>Aspergillus nidulans</i> . Eukaryotic Cell, 2007, 6, 1570-1583.	3.4	133
26	Phosphopantetheinyl Transferase CfwA/NpgA Is Required for Aspergillus nidulans Secondary Metabolism and Asexual Development. Eukaryotic Cell, 2007, 6, 710-720.	3.4	73
27	TmpA, a member of a novel family of putative membrane flavoproteins, regulates asexual development in Aspergillus nidulans. Molecular Microbiology, 2006, 59, 854-869.	2.5	49
28	Fungal responses to reactive oxygen species. Medical Mycology, 2006, 44, 101-107.	0.7	135
29	Genetics of phytopathology: Secondary metabolites as virulence determinants of fungal plant pathogens. Progress in Botany Fortschritte Der Botanik, 2006, , 134-161.	0.3	8
30	Reactive oxygen species and development in microbial eukaryotes. Trends in Microbiology, 2005, 13, 111-118.	7.7	545
31	Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology (United Kingdom), 2004, 150, 311-319.	1.8	46
32	Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Molecular Microbiology, 2003, 50, 1241-1255.	2.5	363
33	SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Molecular Microbiology, 2002, 45, 1153-1163.	2.5	218
34	Multiple Catalase Genes Are Differentially Regulated in Aspergillus nidulans. Journal of Bacteriology, 2001, 183, 1434-1440.	2.2	129
35	Pectinase production by a diploid construct from two Aspergillus niger overproducing mutants. Enzyme and Microbial Technology, 1999, 25, 103-108.	3.2	20
36	Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology (United Kingdom), 1999, 145, 3229-3234.	1.8	55

Jesus Aguirre

#	Article	IF	CITATIONS
37	Correlation between the regulation of sterigmatocystin biosynthesis and asexual and sexual sporulation in Emericella nidulans. Antonie Van Leeuwenhoek, 1998, 73, 199-205.	1.7	53
38	Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Molecular Genetics and Genomics, 1998, 258, 89-94.	2.4	72
39	Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. Journal of Bacteriology, 1997, 179, 3284-3292.	2.2	150
40	catA, a newAspergillus nidulans gene encoding a developmentally regulated catalane. Current Genetics, 1996, 29, 352-359.	1.7	34
41	catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Current Genetics, 1996, 29, 352-359.	1.7	92
42	Efficient Transformation of Aspergillus nidulans by Electroporation of Germinated Conidia. Fungal Genetics Reports, 1996, 43, 48-51.	0.6	50
43	Aspergillus nidulans Mutants Affected in Acetate Metabolism Isolated as Lipid Nonutilizers. Experimental Mycology, 1995, 19, 81-85.	1.6	16
44	Spatial and temporal controls of the Aspergillus brlA developmental regulatory gene. Molecular Microbiology, 1993, 8, 211-218.	2.5	74
45	Hyperoxidant states cause microbial cell differentiation by cell isolation from dioxygen. Journal of Theoretical Biology, 1990, 142, 201-221.	1.7	190
46	Spatial control of developmental regulatory genes inAspergillus nidulans. Experimental Mycology, 1990, 14, 290-293.	1.6	30
47	Oxidation of Neurospora crassa NADP-specific glutamate dehydrogenase by activated oxygen species. Journal of Bacteriology, 1989, 171, 6243-6250.	2.2	22
48	Aerial growth inNeurospora crassa: Characterization of an experimental model system. Experimental Mycology, 1986, 10, 114-125.	1.6	18
49	Oxidation of Neurospora crassa glutamine synthetase. Journal of Bacteriology, 1986, 166, 1040-1045.	2.2	29