Alexander M K Rothman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150832/publications.pdf

Version: 2024-02-01

43 papers 1,328 citations

16 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

2095 citing authors

#	Article	IF	CITATIONS
1	The effect of interleukin-1 receptor antagonist therapy on markers of inflammation in non-ST elevation acute coronary syndromes: the MRC-ILA Heart Study. European Heart Journal, 2015, 36, 377-384.	2.2	243
2	Magnetic Resonance Imaging in the Prognostic Evaluation of Patients with Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 228-239.	5.6	122
3	MicroRNA-140-5p and SMURF1 regulate pulmonary arterial hypertension. Journal of Clinical Investigation, 2016, 126, 2495-2508.	8.2	119
4	Older Adults' Experiences Using a Commercially Available Monitor to Self-Track Their Physical Activity. JMIR MHealth and UHealth, 2016, 4, e35.	3.7	117
5	Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients With Pulmonary Arterial Hypertension of Different Causes. Circulation: Cardiovascular Interventions, 2015, 8, e002837.	3.9	103
6	Identification of Cardiac Magnetic Resonance Imaging Thresholds for Risk Stratification in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 458-468.	5.6	99
7	Pulmonary Artery Denervation Reduces Pulmonary Artery Pressure and Induces Histological Changes in an Acute Porcine Model of Pulmonary Hypertension. Circulation: Cardiovascular Interventions, 2015, 8, e002569.	3.9	66
8	Intravascular Ultrasound Pulmonary Artery Denervation to Treat Pulmonary Arterial Hypertension (TROPHY1). JACC: Cardiovascular Interventions, 2020, 13, 989-999.	2.9	47
9	Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovascular Research, 2013, 100, 252-261.	3.8	45
10	klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes. PLoS ONE, 2015, 10, e0141611.	2.5	40
11	Cardiac magnetic resonance identifies raised left ventricular filling pressure: prognostic implications. European Heart Journal, 2022, 43, 2511-2522.	2.2	32
12	A diagnostic miRNA signature for pulmonary arterial hypertension using a consensus machine learning approach. EBioMedicine, 2021, 69, 103444.	6.1	30
13	Metaâ€analysis of echocardiographic quantification of left ventricular filling pressure. ESC Heart Failure, 2021, 8, 566-576.	3.1	27
14	Differential IL-1 signaling induced by BMPR2 deficiency drives pulmonary vascular remodeling. Pulmonary Circulation, 2017, 7, 768-776.	1.7	26
15	A therapeutic antibody targeting osteoprotegerin attenuates severe experimental pulmonary arterial hypertension. Nature Communications, 2019, 10, 5183.	12.8	22
16	IL-6 in pulmonary hypertension: why novel is not always best. European Respiratory Journal, 2020, 55, 2000314.	6.7	21
17	Interleukin-1 beta inhibition with canakinumab and reducing lung cancerâ€"subset analysis of the canakinumab anti-inflammatory thrombosis outcome study trial (CANTOS). Journal of Thoracic Disease, 2018, 10, S3084-S3087.	1.4	17
18	Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-17.	1.7	16

#	Article	IF	CITATIONS
19	Right ventricular remodelling in pulmonary arterial hypertension predicts treatment response. Heart, 2022, 108, 1392-1400.	2.9	15
20	Age-associated changes in 4D flow CMR derived Tricuspid Valvular Flow and Right Ventricular Blood Flow Kinetic Energy. Scientific Reports, 2020, 10, 9908.	3.3	13
21	Emerging therapies for right ventricular dysfunction and failure. Cardiovascular Diagnosis and Therapy, 2020, 10, 1735-1767.	1.7	13
22	Maximal Exercise Testing Using the Incremental Shuttle Walking Test Can Be Used to Risk-Stratify Patients with Pulmonary Arterial Hypertension. Annals of the American Thoracic Society, 2021, 18, 34-43.	3.2	13
23	Cardiovascular magnetic resonance predicts all-cause mortality in pulmonary hypertension associated with heart failure with preserved ejection fraction. International Journal of Cardiovascular Imaging, 2021, 37, 3019-3025.	1.5	12
24	Right Ventricular Adaptation Assessed Using Cardiac Magnetic Resonance Predicts Survival in Pulmonary Arterial Hypertension. JACC: Cardiovascular Imaging, 2021, 14, 1271-1272.	5.3	11
25	Arrhythmic Burden and Outcomes in Pulmonary Arterial Hypertension. Frontiers in Medicine, 2019, 6, 169.	2.6	10
26	Training and clinical testing of artificial intelligence derived right atrial cardiovascular magnetic resonance measurements. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 25.	3.3	8
27	Clinical predictors of allâ€cause mortality in patients presenting to specialist heart failure clinic with raised NTâ€proBNP and no heart failure. ESC Heart Failure, 2020, 7, 1791-1800.	3.1	7
28	Imaging and Risk Stratification in Pulmonary Arterial Hypertension: Time to Include Right Ventricular Assessment. Frontiers in Cardiovascular Medicine, 2022, 9, 797561.	2.4	7
29	Investigating Microtemporal Processes Underlying Health Behavior Adoption and Maintenance: Protocol for an Intensive Longitudinal Observational Study. JMIR Research Protocols, 2022, 11, e36666.	1.0	6
30	The Canakinumab Antiinflammatory Thrombosis Outcome Study trial—the starting gun has fired. Journal of Thoracic Disease, 2017, 9, 4922-4925.	1.4	5
31	Positioning imatinib for pulmonary arterial hypertension: A phase I/II design comprising dose finding and singleâ€arm efficacy. Pulmonary Circulation, 2021, 11, 1-12.	1.7	5
32	miRNA-140-5p: new avenue for pulmonary arterial hypertension drug development?. Epigenomics, 2016, 8, 1311-1313.	2.1	4
33	Prolonged enoxaparin therapy compared with standard-of-care antithrombotic therapy in opiate-treated patients undergoing primary percutaneous coronary intervention. Platelets, 2021, 32, 555-559.	2.3	3
34	T5 Opg Regulates Pulmonary Arterial Smooth Muscle Cell Proliferation And The Expression Of Pah-associated Genes Via Fas. Thorax, 2014, 69, A2-A3.	5.6	1
35	Eâ€microRNA-140-5p and SMURF1 Regulate Pulmonary Arterial Hypertension. Heart, 2016, 102, A147-A147.	2.9	1
36	Prognostic Significance of Reduced Blood Pressure Response to Exercise in Pediatric Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1478-1481.	5.6	1

#	Article	lF	CITATIONS
37	124â€Comparing the safety and feasibility of implanting pulmonary artery pressure monitors via the internal jugular vein compared to standard femoral venous access in patients with pulmonary arterial hypertension., 2021,,.		1
38	Response to Letter Regarding Article, "Hemodynamic, Functional, and Clinical Responses to Pulmonary Artery Denervation in Patients With Pulmonary Arterial Hypertension of Different Causes: Phase II Results From the Pulmonary Artery Denervation-1 Study― Circulation: Cardiovascular Interventions, 2016, 9, e003463.	3.9	0
39	$25 {\hat a} {\in} \text{Mitral}$ inflow velocity encoded imaging by CMR for the assessment of left ventricular haemodynamics. , 2019, , .		O
40	$26 \hat{a} \in A$ non-invasive CMR assessment for predicting mean pulmonary artery pressure in pulmonary hypertension. , 2019, , .		O
41	27â€Mixed venous oxygen levels in pulmonary hypertension is associated with right heart multi-parametric assessment. , 2019, , .		O
42	$121\hat{a}\in$ Effect of UK COVID-19 public health measures on activity and quality of life in patients with pulmonary arterial hypertension., 2021,,.		0
43	Percent-predicted incremental shuttle walking test distance stratifies risk in pulmonary arterial hypertension., 2020,,.		0