Victor A Streltsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox state and photoreduction control using X-ray spectroelectrochemical techniques – advances in design and fabrication through additive engineering. Journal of Synchrotron Radiation, 2021, 28, 472-479.	2.4	2
2	Citrullination of Amyloid-β Peptides in Alzheimer's Disease. ACS Chemical Neuroscience, 2021, 12, 3719-3732.	3.5	10
3	Substitutions at H134 and in the 430-loop region in influenza B neuraminidases can confer reduced susceptibility to multiple neuraminidase inhibitors. Antiviral Research, 2020, 182, 104895.	4.1	1
4	Passaging of an influenza A(H1N1)pdm09 virus in a difluoro sialic acid inhibitor selects for a novel, but unfit I106M neuraminidase mutant. Antiviral Research, 2019, 169, 104542.	4.1	5
5	Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nature Communications, 2019, 10, 2222.	12.8	20
6	Structure of an Influenza A virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 89-97.	0.8	7
7	Structural and Functional Analysis of Anti-Influenza Activity of 4-, 7-, 8- and 9-Deoxygenated 2,3-Difluoro- <i>N</i> -acetylneuraminic Acid Derivatives. Journal of Medicinal Chemistry, 2018, 61, 1921-1933.	6.4	9
8	Structural Insight into Redox Dynamics of Copper Bound N-Truncated Amyloid-β Peptides from <i>in Situ</i> X-ray Absorption Spectroscopy. Inorganic Chemistry, 2018, 57, 11422-11435.	4.0	25
9	Lysine postâ€translational modification of glyceraldehydeâ€3â€phosphate dehydrogenase regulates hepatic and systemic metabolism. FASEB Journal, 2017, 31, 2592-2602.	0.5	31
10	Iron, Copper, and Zinc Concentration in Aβ Plaques in the APP/PS1 Mouse Model of Alzheimer's Disease Correlates with Metal Levels in the Surrounding Neuropil. ACS Chemical Neuroscience, 2017, 8, 629-637.	3.5	107
11	Measurements of Long-range Electronic Correlations During Femtosecond Diffraction Experiments Performed on Nanocrystals of Buckminsterfullerene. Journal of Visualized Experiments, 2017, , .	0.3	3
12	Nanocrystallography measurements of early stage synthetic malaria pigment. Journal of Applied Crystallography, 2017, 50, 1533-1540.	4.5	11
13	X-ray laser–induced electron dynamics observed by femtosecond diffraction from nanocrystals of Buckminsterfullerene. Science Advances, 2016, 2, e1601186.	10.3	20
14	Whole-pattern fitting technique in serial femtosecond nanocrystallography. IUCrJ, 2016, 3, 127-138.	2.2	4
15	A library of AuNPs modified by RAFT polymers of different charge and chain length: high throughput synthesis and synchrotron XFM imaging using a zebrafish larvae model. RSC Advances, 2016, 6, 23550-23563.	3.6	6
16	Differential Receptor Binding and Regulatory Mechanisms for the Lymphangiogenic Growth Factors Vascular Endothelial Growth Factor (VEGF)-C and -D. Journal of Biological Chemistry, 2016, 291, 27265-27278.	3.4	35
17	Solution structures of chloroquine–ferriheme complexes modeled using MD simulation and investigated by EXAFS spectroscopy. Journal of Inorganic Biochemistry, 2016, 154, 114-125.	3.5	14
18	Catalytic mechanism and novel receptor binding sites of human parainfluenza virus type 3 hemagglutinin-neuraminidase (hPIV3 HN). Antiviral Research, 2015, 123, 216-223.	4.1	15

#	Article	IF	CITATIONS
19	Alkoxide coordination of iron(iii) protoporphyrin IX by antimalarial quinoline methanols: a key interaction observed in the solid-state and solution. Dalton Transactions, 2015, 44, 16767-16777.	3.3	19
20	Molecular Structures and Solvation of Free Monomeric and Dimeric Ferriheme in Aqueous Solution: Insights from Molecular Dynamics Simulations and Extended X-ray Absorption Fine Structure Spectroscopy. Inorganic Chemistry, 2014, 53, 10811-10824.	4.0	15
21	Unprecedented conformational flexibility revealed in the ligand-binding domains of the <i>Bovicola ovis</i> ecdysone receptor (EcR) and ultraspiracle (USP) subunits. Acta Crystallographica Section D: Biological Crystallography, 2014, 70, 1954-1964.	2.5	17
22	Design of non-aggregating variants of AÎ ² peptide. Biochemical and Biophysical Research Communications, 2014, 453, 449-454.	2.1	0
23	Naturally occurring polyphenolic inhibitors of amyloid beta aggregation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3108-3112.	2.2	76
24	Inhibition of amyloid beta-induced synaptotoxicity by a pentapeptide derived from the glycine zipper region of the neurotoxic peptide. Neurobiology of Aging, 2013, 34, 2805-2814.	3.1	41
25	Structural insights into the interaction of platinum-based inhibitors with the Alzheimer's disease amyloid-β peptide. Chemical Communications, 2013, 49, 11364.	4.1	38
26	Continuous X-ray diffractive field in protein nanocrystallography. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 108-118.	0.3	18
27	Mechanism-Based Covalent Neuraminidase Inhibitors with Broad-Spectrum Influenza Antiviral Activity. Science, 2013, 340, 71-75.	12.6	175
28	Structural studies of the tethered N-terminus of the Alzheimer's disease amyloid-β peptide. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1748-1758.	2.6	22
29	Ammonium hydroxide treatment of Aβ produces an aggregate free solution suitable for biophysical and cell culture characterization. PeerJ, 2013, 1, e73.	2.0	93
30	In vitro passaging of a pandemic H1N1/09 virus selects for viruses with neuraminidase mutations conferring high-level resistance to oseltamivir and peramivir, but not to zanamivir. Journal of Antimicrobial Chemotherapy, 2012, 67, 1874-1883.	3.0	27
31	Preparation of human vascular endothelial growth factor-D for structural and preclinical therapeutic studies. Protein Expression and Purification, 2012, 82, 232-239.	1.3	15
32	Structure and Function of Ecdysone Receptors—Interactions with Ecdysteroids and Synthetic Agonists. Advances in Insect Physiology, 2012, 43, 299-351.	2.7	15
33	Oligomerization and toxicity of $A\hat{I}^2$ fusion proteins. Biochemical and Biophysical Research Communications, 2011, 409, 477-482.	2.1	5
34	The VD1 Neutralizing Antibody to Vascular Endothelial Growth Factor-D: Binding Epitope and Relationship to Receptor Binding. Journal of Molecular Biology, 2011, 407, 581-593.	4.2	15
35	Isolation, kinetic analysis, and structural characterization of an antibody targeting the <i>Bacillus anthracis</i> major spore surface protein BclA. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1306-1317.	2.6	6
36	Crystal Structure of the Amyloid-Î ² p3 Fragment Provides a Model for Oligomer Formation in Alzheimer's Disease. Journal of Neuroscience, 2011, 31, 1419-1426.	3.6	99

#	Article	IF	CITATIONS
37	Germline humanization of a murine Aβ antibody and crystal structure of the humanized recombinant Fab fragment. Protein Science, 2010, 19, 299-308.	7.6	25
38	Modelling Copper Binding to the Amyloid-Î ² Peptide in Alzheimer. Australian Journal of Chemistry, 2010, 63, 345.	0.9	3
39	Crystallisation of Wild-Type and Variant Forms of a Recombinant Plant Enzyme β-D-Glucan Glucohydrolase from Barley (Hordeum vulgare L.) and Preliminary X-ray Analysis. International Journal of Molecular Sciences, 2010, 11, 2759-2769.	4.1	5
40	Structural and Functional Basis of Resistance to Neuraminidase Inhibitors of Influenza B Viruses. Journal of Medicinal Chemistry, 2010, 53, 6421-6431.	6.4	75
41	Hematinâ^'Hematin Self-Association States Involved in the Formation and Reactivity of the Malaria Parasite Pigment, Hemozoin. Biochemistry, 2010, 49, 6804-6811.	2.5	57
42	Structural insights into ligandâ€induced activation of the insulin receptor. Acta Physiologica, 2008, 192, 3-9.	3.8	50
43	X-ray absorption and diffraction studies of the metal binding sites in amyloid β-peptide. European Biophysics Journal, 2008, 37, 257-263.	2.2	23
44	Shark IgNAR antibody mimotopes target a murine immunoglobulin through extended CDR3 loop structures. Proteins: Structure, Function and Bioinformatics, 2008, 71, 119-130.	2.6	27
45	Construction, crystal structure and application of a recombinant protein that lacks the collagenâ€like region of BclA from <i>Bacillus anthracis</i> spores. Biotechnology and Bioengineering, 2008, 99, 774-782.	3.3	15
46	The Structure of the Amyloid-β Peptide High-Affinity Copper II Binding Site in Alzheimer Disease. Biophysical Journal, 2008, 95, 3447-3456.	0.5	108
47	Substrate mediated reduction of copper-amyloid-β complex in Alzheimer's disease. Chemical Communications, 2008, , 3169.	4.1	27
48	Domain I of ribosomal protein L1 is sufficient for specific RNA binding. Nucleic Acids Research, 2007, 35, 7389-7395.	14.5	17
49	Structure of an IgNAR-AMA1 Complex: Targeting a Conserved Hydrophobic Cleft Broadens Malarial Strain Recognition. Structure, 2007, 15, 1452-1466.	3.3	101
50	The insulin and EGF receptor structures: new insights into ligand-induced receptor activation. Trends in Biochemical Sciences, 2007, 32, 129-137.	7.5	122
51	Structure of the insulin receptor ectodomain reveals a folded-over conformation. Nature, 2006, 443, 218-221.	27.8	277
52	In vitro improvement of a shark IgNAR antibody by $Q\hat{l}^2$ replicase mutation and ribosome display mimics in vivo affinity maturation. Immunology Letters, 2006, 107, 163-168.	2.5	34
53	Dimerisation strategies for shark IgNAR single domain antibody fragments. Journal of Immunological Methods, 2006, 315, 171-184.	1.4	43
54	Structure of a shark IgNAR antibody variable domain and modeling of an early-developmental isotype. Protein Science, 2005, 14, 2901-2909.	7.6	68

#	Article	IF	CITATIONS
55	Do sharks have a new antibody lineage?. Immunology Letters, 2005, 97, 159-160.	2.5	8
56	Crystal structure study of a β′-copper vanadium bronze, Cu x V2O5 (x = 0.63), by X-ray and convergent beam electron diffraction. Acta Crystallographica Section B: Structural Science, 2005, 61, 17-24.	1.8	10
57	Structural Rationale for Low-Nanomolar Binding of Transition State Mimics to a Family GH3 β-d-Glucan Glucohydrolase from Barleyâ€,‡. Biochemistry, 2005, 44, 16529-16539.	2.5	42
58	Structural evidence for evolution of shark Ig new antigen receptor variable domain antibodies from a cell-surface receptor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12444-12449.	7.1	119
59	Synchrotron X-ray and ab initio studies of β-Si3N4. Acta Crystallographica Section B: Structural Science, 2004, 60, 388-405.	1.8	38
60	Structure of the Haemagglutinin-neuraminidase from Human Parainfluenza Virus Type III. Journal of Molecular Biology, 2004, 335, 1343-1357.	4.2	200
61	Cation movement and phase transitions in KTP isostructures; X-ray study of sodium-doped KTP at 10.5â€K. Acta Crystallographica Section B: Structural Science, 2003, 59, 353-360.	1.8	9
62	Haloalkane Dehalogenase LinB fromSphingomonas paucimobilisUT26:Â X-ray Crystallographic Studies of Dehalogenation of Brominated Substratesâ€,‡. Biochemistry, 2003, 42, 10104-10112.	2.5	43
63	A Combination Method of Charge Density Measurement in Hard Materials Using Accurate, Quantitative Electron and X-ray Diffraction: The α-Al2O3 Case. Microscopy and Microanalysis, 2003, 9, 419-427.	0.4	17
64	L22 Ribosomal Protein and Effect of Its Mutation on Ribosome Resistance to Erythromycin. Journal of Molecular Biology, 2002, 322, 635-644.	4.2	48
65	Synchrotron X-ray analysis of the electron density in CoF2 and ZnF2. Acta Crystallographica Section B: Structural Science, 2001, 57, 128-135.	1.8	26
66	Synchrotron X-ray study of Er3Al5O12 and Yb3Al5O12 garnets. Acta Crystallographica Section B: Structural Science, 2001, 57, 136-141.	1.8	17
67	Electron density in the sodium vanadium oxide bronze β-Na x V2O5 at 9â€K. Acta Crystallographica Section B: Structural Science, 2001, 57, 244-250.	1.8	8
68	Crystals of a mutant form of ribosomal protein L22 rendering bacterial ribosomes resistant to erythromycin. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1150-1152.	2.5	1
69	Charge density analysis from complementary high energy synchrotron X-ray and electron diffraction data. Journal of Physics and Chemistry of Solids, 2001, 62, 2109-2117.	4.0	23
70	Synchrotron X-ray analysis of RbTiOAsO4. Acta Crystallographica Section B: Structural Science, 2000, 56, 785-792.	1.8	10
71	Dopant positions in strontium/chromium- and barium-doped KTP, determined with synchrotron X-radiation. Acta Crystallographica Section B: Structural Science, 2000, 56, 980-987.	1.8	4
72	Synchrotron X-ray study of the electron density in RFeO3 (R = Nd, Dy). Acta Crystallographica Section B: Structural Science, 1999, 55, 1-7.	1.8	35

#	Article	IF	CITATIONS
73	Synchrotron X-ray analysis of the electron density in HoFe2. Acta Crystallographica Section B: Structural Science, 1999, 55, 321-326.	1.8	4
74	Structure of and electron density in RbTiOAsO4 at 9.6â€K. Acta Crystallographica Section B: Structural Science, 1999, 55, 712-720.	1.8	9
75	Synchrotron X-ray Imaging of the Electron Density in RFeO3 (R = Y, Ho) Using an APD Detector. Journal of Synchrotron Radiation, 1998, 5, 1309-1316.	2.4	7
76	A synchrotron X-ray study of the electron density in C-type rare earth oxides. Acta Crystallographica Section B: Structural Science, 1996, 52, 414-422.	1.8	64
77	A synchrotron X-ray study of the electron density in SmFeO3. Acta Crystallographica Section B: Structural Science, 1996, 52, 406-413.	1.8	52
78	Synchrotron X-ray electron density in the layered LaOCl structure. Acta Crystallographica Section B: Structural Science, 1996, 52, 576-579.	1.8	14
79	Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallographica Section B: Structural Science, 1995, 51, 929-939.	1.8	155
80	A synchrotron X-ray study of the electron density in YFeO3. Acta Crystallographica Section B: Structural Science, 1995, 51, 921-929.	1.8	65
81	Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Crystallographica Section B: Structural Science, 1994, 50, 435-441.	1.8	140
82	Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data. Acta Crystallographica Section B: Structural Science, 1993, 49, 147-153.	1.8	196
83	X-ray study of the electron density in calcite, CaCo3. Acta Crystallographica Section B: Structural Science, 1993, 49, 636-641.	1.8	148
84	X-ray study of the electron density in magnesite MgCO3. Acta Crystallographica Section B: Structural Science, 1993, 49, 980-984.	1.8	16
85	Electron density distribution in 3d-metal sesquioxides. Physica Status Solidi A, 1989, 115, 515-521.	1.7	2
86	Defects in Crystals under Pressure. Physica Status Solidi A, 1985, 91, 89-98.	1.7	1