Kelong Fan

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/615022/kelong-fan-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

78
papers

5,437
citations

36
h-index

96
ext. papers

7,615
ext. citations

10.7
avg, IF

6.29
L-index

#	Paper	IF	Citations
78	Re-engineering the inner surface of ferritin nanocage enables dual drug payloads for synergistic tumor therapy <i>Theranostics</i> , 2022 , 12, 1800-1815	12.1	4
77	Bioinspired Five-Coordinated Single-Atom Iron Nanozyme for Tumor Catalytic Therapy <i>Advanced Materials</i> , 2022 , e2107088	24	20
76	Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy. <i>Nano Research</i> , 2022 , 15, 1554	10	5
75	Nanozyme: A promising tool from clinical diagnosis and environmental monitoring to wastewater treatment. <i>Particuology</i> , 2022 , 71, 90-107	2.8	2
74	Bioadhesive injectable hydrogel with phenolic carbon quantum dot supported Pd single atom nanozymes as a localized immunomodulation niche for cancer catalytic immunotherapy. Biomaterials, 2021, 280, 121272	15.6	16
73	Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. <i>Nano Today</i> , 2021 , 41, 101317	17.9	21
72	Regenerable Cerium Oxide Nanozyme-Loaded pH/HO-Responsive Nanovesicle for Tumor-Targeted Photothermal and Photodynamic Therapies. <i>ACS Applied Materials & Description (Control of the Control of the Con</i>	9.5	17
71	High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy. <i>ACS Nano</i> , 2021 , 15, 5735-5751	16.7	78
70	Bioengineered Dual-Targeting Protein Nanocage for Stereoscopical Loading of Synergistic Hydrophilic/Hydrophobic Drugs to Enhance Anticancer Efficacy. <i>Advanced Functional Materials</i> , 2021 , 31, 2102004	15.6	6
69	Nanocage-Based Capture-Detection System for the Clinical Diagnosis of Autoimmune Disease. <i>Small</i> , 2021 , 17, e2101655	11	2
68	Diagnosis of Autoimmune Diseases: Nanocage-Based Capture-Detection System for the Clinical Diagnosis of Autoimmune Disease (Small 25/2021). <i>Small</i> , 2021 , 17, 2170126	11	Ο
67	Nanozymes Inspired by Natural Enzymes. Accounts of Materials Research, 2021, 2, 534-547	7.5	68
66	Synergistic Chemotherapy: Bioengineered Dual-Targeting Protein Nanocage for Stereoscopical Loading of Synergistic Hydrophilic/Hydrophobic Drugs to Enhance Anticancer Efficacy (Adv. Funct. Mater. 29/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170207	15.6	
65	Persistent luminescence-polypyrrole nanocomposite for dual-modal imaging and photothermal therapy of mammary cancer. <i>Talanta</i> , 2021 , 221, 121435	6.2	7
64	A Nanozyme-Based Artificial Peroxisome Ameliorates Hyperuricemia and Ischemic Stroke. <i>Advanced Functional Materials</i> , 2021 , 31, 2007130	15.6	33
63	Protein-protected metal nanoclusters as diagnostic and therapeutic platforms for biomedical applications. <i>Materials Today</i> , 2021 ,	21.8	13
62	Nanozyme for tumor therapy: Surface modification matters. <i>Exploration</i> , 2021 , 1, 75-89		72

(2020-2021)

61	Ferritin nanocages for early theranostics of tumors via inflammation-enhanced active targeting. <i>Science China Life Sciences</i> , 2021 , 1	8.5	2
60	From mouse to mouse-ear cress: Nanomaterials as vehicles in plant biotechnology. <i>Exploration</i> , 2021 , 1, 9-20		13
59	Ferritin nanocage: A promising and designable multi-module platform for constructing dynamic nanoassembly-based drug nanocarrier. <i>Advanced Drug Delivery Reviews</i> , 2021 , 176, 113892	18.5	10
58	Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. <i>Bioactive Materials</i> , 2021 , 6, 2676-2687	16.7	45
57	TiO supported single Ag atoms nanozyme for elimination of SARS-CoV2. <i>Nano Today</i> , 2021 , 40, 101243	17.9	14
56	Nanozymes: A clear definition with fuzzy edges. <i>Nano Today</i> , 2021 , 40, 101269	17.9	97
55	Superoxide dismutase nanozymes: an emerging star for anti-oxidation. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6939-6957	7.3	24
54	Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. <i>Nanoscale</i> , 2020 , 12, 13548-13557	7.7	54
53	TfR1 binding with H-ferritin nanocarrier achieves prognostic diagnosis and enhances the therapeutic efficacy in clinical gastric cancer. <i>Cell Death and Disease</i> , 2020 , 11, 92	9.8	24
52	Nanozymes: created by learning from nature. <i>Science China Life Sciences</i> , 2020 , 63, 1183-1200	8.5	58
51	Nanozymes: a new choice for disease treatment. <i>Scientia Sinica Vitae</i> , 2020 , 50, 311-328	1.4	2
50	Nanozymes and Their Applications in Biomedicine 2020 , 15-1-15-22		
49	Cerium Oxide Based Nanozymes. <i>Nanostructure Science and Technology</i> , 2020 , 279-329	0.9	3
48	Nanozyme-Based Tumor Theranostics. <i>Nanostructure Science and Technology</i> , 2020 , 425-457	0.9	3
47	Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetics for Biomedical Application. Nanostructure Science and Technology, 2020 , 105-140	0.9	22
46	Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 1636-16	44.4	108
45	Protein-protected metal nanoclusters: An emerging ultra-small nanozyme. <i>Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology</i> , 2020 , 12, e1602	9.2	25
44	Ferritins as natural and artificial nanozymes for theranostics. <i>Theranostics</i> , 2020 , 10, 687-706	12.1	51

43	Nano-decocted ferrous polysulfide coordinates ferroptosis-like death in bacteria for anti-infection therapy. <i>Nano Today</i> , 2020 , 35, 100981	17.9	24
42	Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. <i>Materials Today</i> , 2020 , 41, 81-119	21.8	127
41	A metal-free nanozyme-activated prodrug strategy for targeted tumor catalytic therapy. <i>Nano Today</i> , 2020 , 35, 100935	17.9	60
40	The prototypes of nanozyme-based nanorobots. <i>Biophysics Reports</i> , 2020 , 6, 223-244	3.5	3
39	Stellate Plasmonic Exosomes for Penetrative Targeting Tumor NIR-II Thermo-Radiotherapy. <i>ACS Applied Materials & Applied & Applied Materials & Applied Materials & Applied & App</i>	9.5	40
38	A natural drug entry channel in the ferritin nanocage. <i>Nano Today</i> , 2020 , 35, 100948	17.9	17
37	Precise visual distinction of brain glioma from normal tissues via targeted photoacoustic and fluorescence navigation. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2020 , 27, 102204	6	6
36	Ferritin drug carrier (FDC) for tumor targeting therapy. <i>Journal of Controlled Release</i> , 2019 , 311-312, 288-300	11.7	59
35	A Single-Atom Nanozyme for Wound Disinfection Applications. <i>Angewandte Chemie</i> , 2019 , 131, 4965-49	9 30 6	53
34	A Single-Atom Nanozyme for Wound Disinfection Applications. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 4911-4916	16.4	335
33	Ferritin variants: inspirations for rationally designing protein nanocarriers. <i>Nanoscale</i> , 2019 , 11, 12449-	12/4/59	27
32	GRP78-targeted ferritin nanocaged ultra-high dose of doxorubicin for hepatocellular carcinoma therapy. <i>Theranostics</i> , 2019 , 9, 2167-2182	12.1	45
31	Bioengineered magnetoferritin nanozymes for pathological identification of high-risk and ruptured atherosclerotic plaques in humans. <i>Nano Research</i> , 2019 , 12, 863-868	10	12
30	Nanozymes: an emerging field bridging nanotechnology and enzymology. <i>Science China Life Sciences</i> , 2019 , 62, 1543-1546	8.5	19
29	Fenozyme Protects the Integrity of the Blood-Brain Barrier against Experimental Cerebral Malaria. <i>Nano Letters</i> , 2019 , 19, 8887-8895	11.5	38
28	The Advances of Nanozyme in Brain Disease 2019 , 139-179		1
27	Nanozyme-based catalytic theranostics <i>RSC Advances</i> , 2019 , 10, 10-20	3.7	48
26	Biomineralization Synthesis of the Cobalt Nanozyme in SP94-Ferritin Nanocages for Prognostic Diagnosis of Hepatocellular Carcinoma. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 9747-9755	9.5	45

25	Advances in chiral nanozymes: a review. Mikrochimica Acta, 2019, 186, 782	5.8	19
24	Catalytic inactivation of influenza virus by iron oxide nanozyme. <i>Theranostics</i> , 2019 , 9, 6920-6935	12.1	54
23	Exosome-like Nanozyme Vesicles for HO-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma. <i>Nano Letters</i> , 2019 , 19, 203-209	11.5	92
22	Fenobody: A Ferritin-Displayed Nanobody with High Apparent Affinity and Half-Life Extension. <i>Analytical Chemistry</i> , 2018 , 90, 5671-5677	7.8	35
21	In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. <i>Nature Communications</i> , 2018 , 9, 1440	17.4	480
20	Ferritin Nanocarrier Traverses the Blood Brain Barrier and Kills Glioma. ACS Nano, 2018, 12, 4105-4115	16.7	144
19	Endoscopic molecular imaging of early gastric cancer using fluorescently labeled human H-ferritin nanoparticle. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 2259-2270	6	8
18	Bioengineered Ferritin Nanoprobes for Cancer Theranostics 2018 , 143-175		3
17	Converting organosulfur compounds to inorganic polysulfides against resistant bacterial infections. <i>Nature Communications</i> , 2018 , 9, 3713	17.4	85
16	Bioengineered H-Ferritin Nanocages for Quantitative Imaging of Vulnerable Plaques in Atherosclerosis. <i>ACS Nano</i> , 2018 , 12, 9300-9308	16.7	25
15	Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. <i>Nature Protocols</i> , 2018 , 13, 1506-1520	18.8	336
14	Near-Atomic Resolution Structure Determination in Over-Focus with Volta Phase Plate by Cs-Corrected Cryo-EM. <i>Structure</i> , 2017 , 25, 1623-1630.e3	5.2	28
13	Questions about horse spleen ferritin crossing the blood brain barrier via mouse transferrin receptor 1. <i>Protein and Cell</i> , 2017 , 8, 788-790	7.2	13
12	Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. <i>Theranostics</i> , 2017 , 7, 3207-3227	12.1	309
11	Optimization of FeO nanozyme activity via single amino acid modification mimicking an enzyme active site. <i>Chemical Communications</i> , 2016 , 53, 424-427	5.8	225
10	Bioengineered Magnetoferritin Nanoprobes for Single-Dose Nuclear-Magnetic Resonance Tumor Imaging. <i>ACS Nano</i> , 2016 , 10, 4184-91	16.7	64
9	Nanozyme-strip for rapid local diagnosis of Ebola. <i>Biosensors and Bioelectronics</i> , 2015 , 74, 134-41	11.8	237
8	H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 14900-5	11.5	292

7	Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. <i>Analytical Chemistry</i> , 2013 , 85, 308-12	7.8	291
6	Human ferritin for tumor detection and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013 , 5, 287-98	9.2	47
5	Targeting endothelial CD146 attenuates neuroinflammation by limiting lymphocyte extravasation to the CNS. <i>Scientific Reports</i> , 2013 , 3, 1687	4.9	43
4	CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. <i>Blood</i> , 2012 , 120, 2330-9	2.2	129
3	Ex vivo detection of iron oxide magnetic nanoparticles in mice using their intrinsic peroxidase-mimicking activity. <i>Molecular Pharmaceutics</i> , 2012 , 9, 1983-9	5.6	46
2	Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. <i>Nature Nanotechnology</i> , 2012 , 7, 459-64	28.7	502
1	H 2 O 2 Self-Producing Single-Atom Nanozyme Hydrogels as Light-Controlled Oxidative Stress Amplifier for Enhanced Synergistic Therapy by Transforming ColdCommors. <i>Advanced Functional Materials</i> ,2110268	15.6	17