Hitoshi Nishizawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6150135/publications.pdf

Version: 2024-02-01

58	6,139	26	57
papers	citations	h-index	g-index
63	63	63	7463
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Japanese patient with a 2p25.3 terminal deletion presented with earlyâ€onset obesity, intellectual disability and diabetes mellitus: A case report. Journal of Diabetes Investigation, 2022, 13, 391-396.	1.1	1
2	Metabolic surgery in treatment of obese Japanese patients with type 2 diabetes: a joint consensus statement from the Japanese Society for Treatment of Obesity, the Japan Diabetes Society, and the Japan Society for the Study of Obesity. Diabetology International, 2022, 13, 1-30.	0.7	15
3	Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertension Research, 2022, 45, 635-640.	1.5	32
4	Time-Series Change of Serum Soluble T-Cadherin Concentrations and Its Association with Creatine Kinase-MB Levels in ST-Segment Elevation Myocardial Infarction. Journal of Atherosclerosis and Thrombosis, 2022, 29, 1823-1834.	0.9	1
5	Genetic assessment using whole-exome sequencing for a young hypertriglyceridemic patient with repeated acute pancreatitis. Endocrine Journal, 2022, 69, 1101-1108.	0.7	1
6	Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Scientific Reports, 2022, 12, 4159.	1.6	14
7	Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade. Diabetologia, 2022, 65, 1185 - 1197 .	2.9	19
8	Relationship between Health Counselor Characteristics and Counseling Impact on Individuals at High-Risk for Lifestyle-Related Disease: Sub-Analysis of the J-HARP Cluster-Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2022, 19, 6375.	1.2	2
9	Increased vascular permeability and severe renal tubular damage after ischemia-reperfusion injury in mice lacking adiponectin or T-cadherin. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E179-E190.	1.8	17
10	Identification and Clinical Associations of 3 Forms of Circulating T-cadherin in Human Serum. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1333-1344.	1.8	5
11	Evaluation of change in metabolome caused by comprehensive diabetes treatment: A prospective observational study of diabetes inpatients with gas chromatography/mass spectrometryâ€based nonâ€target metabolomic analysis. Journal of Diabetes Investigation, 2021, 12, 2232-2241.	1.1	6
12	Increased plasma XOR activity induced by NAFLD/NASH and its possible involvement in vascular neointimal proliferation. JCI Insight, 2021, 6, .	2.3	11
13	Saliva and Plasma Reflect Metabolism Altered by Diabetes and Periodontitis. Frontiers in Molecular Biosciences, 2021, 8, 742002.	1.6	15
14	Marked Hypergastrinemia with G-cell Hyperplasia in Two Autoimmune Gastritis Patients. Internal Medicine, 2020, 59, 799-803.	0.3	1
15	A disintegrin and metalloproteinase 12 prevents heart failure by regulating cardiac hypertrophy and fibrosis. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H238-H251.	1.5	17
16	Adiponectin Stimulates Exosome Release to Enhance Mesenchymal Stem-Cell-Driven Therapy of Heart Failure in Mice. Molecular Therapy, 2020, 28, 2203-2219.	3.7	86
17	Plasma xanthine oxidoreductase activity in Japanese patients with typeÂ2 diabetes across hospitalized treatment. Journal of Diabetes Investigation, 2020, 12, 1512-1520.	1.1	7
18	Japan Trial in High-Risk Individuals to Enhance Their Referral to Physicians (J-HARP)—A Nurse-Led, Community-Based Prevention Program of Lifestyle-Related Disease. Journal of Epidemiology, 2020, 30, 194-199.	1.1	11

#	Article	IF	CITATIONS
19	Population Approaches Targeting Metabolic Syndrome Focusing on Japanese Trials. Nutrients, 2019, 11, 1430.	1.7	20
20	Adiponectin promotes muscle regeneration through binding to T-cadherin. Scientific Reports, 2019, 9, 16.	1.6	60
21	Positive correlation between fasting plasma glucagon and serum C-peptide in Japanese patients with diabetes. Heliyon, 2019, 5, e01715.	1.4	9
22	Impact of glycosylphosphatidylinositol-specific phospholipase D on hepatic diacylglycerol accumulation, steatosis, and insulin resistance in diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E239-E250.	1.8	14
23	Fat cell lipolysis and future weight gain. Journal of Diabetes Investigation, 2019, 10, 221-223.	1.1	3
24	Characteristics of sleep–wake cycle and sleep duration in Japanese type 2 diabetes patients with visceral fat accumulation. Journal of Diabetes Investigation, 2018, 9, 63-68.	1.1	4
25	Association between poor psychosocial conditions and diabetic nephropathy in Japanese type 2 diabetes patients: A crossâ€sectional study. Journal of Diabetes Investigation, 2018, 9, 162-172.	1.1	9
26	Association of Epicardial, Visceral, and Subcutaneous Fat With Cardiometabolic Diseases. Circulation Journal, 2018, 82, 502-508.	0.7	56
27	Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovascular Diabetology, 2018, 17, 112.	2.7	53
28	Hypoxanthine Secretion from Human Adipose Tissue and its Increase in Hypoxia. Obesity, 2018, 26, 1168-1178.	1.5	47
29	Adiponectin association with Tâ€cadherin protects against neointima proliferation and atherosclerosis. FASEB Journal, 2017, 31, 1571-1583.	0.2	95
30	Increased Dynamics of Tricarboxylic Acid Cycle and Glutamate Synthesis in Obese Adipose Tissue. Journal of Biological Chemistry, 2017, 292, 4469-4483.	1.6	39
31	The unique prodomain of T-cadherin plays a key role in adiponectin binding with the essential extracellular cadherin repeats 1 and 2. Journal of Biological Chemistry, 2017, 292, 7840-7849.	1.6	51
32	Significant Association of Serum Adiponectin and Creatine Kinase-MB Levels in ST-Segment Elevation Myocardial Infarction. Journal of Atherosclerosis and Thrombosis, 2017, 24, 793-803.	0.9	17
33	Multiple Gouty Tophi with Bone Erosion and Destruction: A Report of an Early-onset Case in an Obese Patient. Internal Medicine, 2017, 56, 1071-1077.	0.3	1
34	Impact of visceral fat on gene expression profile in peripheral blood cells in obese Japanese subjects. Cardiovascular Diabetology, 2016, 15, 159.	2.7	12
35	Systemic arteriosclerosis and eating behavior in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovascular Diabetology, 2015, 14, 8.	2.7	17
36	Visualized macrophage dynamics and significance of S100A8 in obese fat. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2058-66.	3.3	43

#	Article	IF	Citations
37	Positive Feedback Regulation Between Adiponectin and T-Cadherin Impacts Adiponectin Levels in Tissue and Plasma of Male Mice. Endocrinology, 2015, 156, 934-946.	1.4	78
38	Possible Involvement of Opa-Interacting Protein 5 in Adipose Proliferation and Obesity. PLoS ONE, 2014, 9, e87661.	1,1	11
39	Long-term impact of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight and glycemic control in Japanese type 2 diabetes: an observational study. Diabetology and Metabolic Syndrome, 2014, 6, 95.	1.2	27
40	Effect of adiponectin on cardiac \hat{l}^2 -catenin signaling pathway under angiotensin II infusion. Biochemical and Biophysical Research Communications, 2014, 444, 224-229.	1.0	15
41	Adipose Hypothermia in Obesity and Its Association with Period Homolog 1, Insulin Sensitivity, and Inflammation in Fat. PLoS ONE, 2014, 9, e112813.	1.1	6
42	Vascular complications and changes in body mass index in Japanese type 2 diabetic patients with abdominal obesity. Cardiovascular Diabetology, 2013, 12, 88.	2.7	15
43	Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity. Journal of Biological Chemistry, 2013, 288, 27138-27149.	1.6	279
44	Efficacy of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight, eating behavior, and glycemic control, in Japanese obese type 2 diabetes. Cardiovascular Diabetology, 2012, 11, 107.	2.7	51
45	Health Education "Hokenshido" Program Reduced Metabolic Syndrome in the Amagasaki Visceral Fat Study. Three-Year Follow-up Study of 3,174 Japanese Employees. Internal Medicine, 2011, 50, 1643-1648.	0.3	29
46	Relationship between visceral fat accumulation and urinary albumin-creatinine ratio in middle-aged Japanese men. Atherosclerosis, 2010, 211, 601-605.	0.4	42
47	Relationship between the Serum Uric Acid Level, Visceral Fat Accumulation and Serum Adiponectin Concentration in Japanese Men. Internal Medicine, 2009, 48, 1493-1493.	0.3	0
48	Nocturnal reduction in circulating adiponectin concentrations related to hypoxic stress in severe obstructive sleep apnea-hypopnea syndrome. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E778-E784.	1.8	64
49	Relationship between the Serum Uric Acid Level, Visceral Fat Accumulation and Serum Adiponectin Concentration in Japanese Men. Internal Medicine, 2008, 47, 1175-1180.	0.3	89
50	Reduction of Visceral Fat Is Associated With Decrease in the Number of Metabolic Risk Factors in Japanese Men. Diabetes Care, 2007, 30, 2392-2394.	4.3	105
51	Musclin, a Novel Skeletal Muscle-derived Secretory Factor. Journal of Biological Chemistry, 2004, 279, 19391-19395.	1.6	145
52	Coordinated Regulation of Fat-Specific and Liver-Specific Glycerol Channels, Aquaporin Adipose and Aquaporin 9. Diabetes, 2002, 51, 2915-2921.	0.3	225
53	Small Heterodimer Partner, an Orphan Nuclear Receptor, Augments Peroxisome Proliferator-activated Receptor Î ³ Transactivation. Journal of Biological Chemistry, 2002, 277, 1586-1592.	1.6	103
54	Androgens Decrease Plasma Adiponectin, an Insulin-Sensitizing Adipocyte-Derived Protein. Diabetes, 2002, 51, 2734-2741.	0.3	709

#	Article	IF	CITATIONS
55	Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 2002, 8, 731-737.	15.2	1,908
56	The Expression of SPARC in Adipose Tissue and Its Increased Plasma Concentration in Patients with Coronary Artery Disease. Obesity, 2001, 9, 388-393.	4.0	45
57	Adipocyte-Derived Plasma Protein, Adiponectin, Suppresses Lipid Accumulation and Class A Scavenger Receptor Expression in Human Monocyte-Derived Macrophages. Circulation, 2001, 103, 1057-1063.	1.6	1,184
58	Aquaporin Adipose, a Putative Glycerol Channel in Adipocytes. Journal of Biological Chemistry, 2000, 275, 20896-20902.	1.6	196