Agata Smogorzewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/615004/publications.pdf

Version: 2024-02-01

50 papers 9,516 citations

34 h-index 50 g-index

56 all docs

56
docs citations

56 times ranked 11530 citing authors

#	Article	IF	CITATIONS
1	ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science, 2007, 316, 1160-1166.	12.6	2,689
2	Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair. Cell, 2007, 129, 289-301.	28.9	608
3	Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 2013, 493, 356-363.	27.8	523
4	The Fanconi Anemia Pathway Promotes Replication-Dependent DNA Interstrand Cross-Link Repair. Science, 2009, 326, 1698-1701.	12.6	454
5	Different telomere damage signaling pathways in human and mouse cells. EMBO Journal, 2002, 21, 4338-4348.	7.8	403
6	Mammalian BTBD12/SLX4 Assembles A Holliday Junction Resolvase and Is Required for DNA Repair. Cell, 2009, 138, 63-77.	28.9	403
7	Cancer Proliferation Gene Discovery Through Functional Genomics. Science, 2008, 319, 620-624.	12.6	365
8	A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nature Cell Biology, 2012, 14, 318-328.	10.3	364
9	DNA Ligase IV-Dependent NHEJ of Deprotected Mammalian Telomeres in G1 and G2. Current Biology, 2002, 12, 1635-1644.	3.9	336
10	A Genetic Screen Identifies FAN1, a Fanconi Anemia-Associated Nuclease Necessary for DNA Interstrand Crosslink Repair. Molecular Cell, 2010, 39, 36-47.	9.7	306
11	Mutations of the SLX4 gene in Fanconi anemia. Nature Genetics, 2011, 43, 142-146.	21.4	291
12	Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency. Journal of Clinical Investigation, 2012, 122, 821-832.	8.2	272
13	A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination. Molecular Cell, 2015, 59, 478-490.	9.7	227
14	FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nature Structural and Molecular Biology, 2008, 15, 1138-1146.	8.2	207
15	FAN1 mutations cause karyomegalic interstitial nephritis, linking chronic kidney failure to defective DNA damage repair. Nature Genetics, 2012, 44, 910-915.	21.4	205
16	Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood, 2013, 121, 54-63.	1.4	146
17	Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway. Science, 2011, 333, 312-316.	12.6	144
18	SnapShot: Fanconi Anemia and Associated Proteins. Cell, 2015, 160, 354-354.e1.	28.9	140

#	Article	IF	Citations
19	Chromosome instability syndromes. Nature Reviews Disease Primers, 2019, 5, 64.	30.5	123
20	Human GEN1 and the SLX4-Associated Nucleases MUS81 and SLX1 Are Essential for the Resolution of Replication-Induced Holliday Junctions. Cell Reports, 2013, 5, 207-215.	6.4	121
21	Advances in understanding DNA processing and protection at stalled replication forks. Journal of Cell Biology, 2019, 218, 1096-1107.	5.2	121
22	Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency. Journal of Clinical Investigation, 2017, 127, 1991-2006.	8.2	115
23	Deficiency of UBE2T, the E2ÂUbiquitin Ligase Necessary for FANCD2 and FANCI Ubiquitination, Causes FA-T Subtype of Fanconi Anemia. Cell Reports, 2015, 12, 35-41.	6.4	107
24	Massively parallel sequencing, aCGH, and RNA-Seq technologies provide a comprehensive molecular diagnosis of Fanconi anemia. Blood, 2013, 121, e138-e148.	1.4	74
25	Natural history and management of <scp>F</scp> anconi anemia patients with head and neck cancer: A 10â€year followâ€up. Laryngoscope, 2016, 126, 870-879.	2.0	71
26	Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. Science, 2014, 346, 1127-1130.	12.6	53
27	Ubiquitylation and the Fanconi anemia pathway. FEBS Letters, 2011, 585, 2853-2860.	2.8	51
28	Postoperative Clinical Radiosensitivity in Patients With Fanconi Anemia and Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngology, 2011, 137, 930.	1.2	49
29	CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	49
30	Distinct roles of BRCA2 in replication fork protection in response to hydroxyurea and DNA interstrand cross-links. Genes and Development, 2020, 34, 832-846.	5.9	48
31	<i>Fan1</i> deficiency results in DNA interstrand cross-link repair defects, enhanced tissue karyomegaly, and organ dysfunction. Genes and Development, 2016, 30, 645-659.	5.9	42
32	S.Âpombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity. Molecular Cell, 2017, 65, 699-714.e6.	9.7	40
33	Removal of RTF2 from Stalled Replisomes Promotes Maintenance of Genome Integrity. Molecular Cell, 2018, 69, 24-35.e5.	9.7	40
34	Assessment of SLX4 Mutations in Hereditary Breast Cancers. PLoS ONE, 2013, 8, e66961.	2.5	37
35	Effect of Fondaparinux on Coagulation Assays: Results of College of American Pathologists Proficiency Testing. Archives of Pathology and Laboratory Medicine, 2006, 130, 1605-1611.	2.5	37
36	Comprehensive Analysis of Pathogenic Deletion Variants in Fanconi Anemia Genes. Human Mutation, 2014, 35, n/a-n/a.	2.5	35

#	Article	IF	CITATIONS
37	A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families. Human Mutation, 2018, 39, 237-254.	2.5	35
38	Genetic interrogation of replicative senescence uncovers a dual role for USP28 in coordinating the p53 and GATA4 branches of the senescence program. Genes and Development, 2017, 31, 1933-1938.	5.9	28
39	Somatic mosaicism of an intragenic <i><scp>FANCB</scp></i> duplication in both fibroblast and peripheral blood cells observed in a Fanconi anemia patient leads to milder phenotype. Molecular Genetics & Enomic Medicine, 2018, 6, 77-91.	1.2	28
40	Mechanisms of direct replication restart at stressed replisomes. DNA Repair, 2020, 95, 102947.	2.8	18
41	Association of clinical severity with FANCB variant type in Fanconi anemia. Blood, 2020, 135, 1588-1602.	1.4	18
42	Treatment of Fanconi Anemia–Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clinical Cancer Research, 2021, 27, 5168-5187.	7.0	18
43	Transcriptional Silencing of <i>ALDH2</i> Confers a Dependency on Fanconi Anemia Proteins in Acute Myeloid Leukemia. Cancer Discovery, 2021, 11, 2300-2315.	9.4	13
44	A founder variant in the South Asian population leads to a high prevalence of <i>FANCL </i> Fanconi anemia cases in India. Human Mutation, 2020, 41, 122-128.	2.5	10
45	Esophageal cancer as initial presentation of Fanconi anemia in patients with a hypomorphic <i>FANCA</i> variant. Journal of Physical Education and Sports Management, 2020, 6, a005595.	1.2	10
46	Endogenous formaldehyde destroys blood stem cells. Blood, 2021, 137, 1988-1990.	1.4	9
47	Paternal or Maternal Uniparental Disomy of Chromosome 16 Resulting in Homozygosity of a Mutant Allele Causes Fanconi Anemia. Human Mutation, 2016, 37, 465-468.	2.5	7
48	Suppression of non-homologous end joining does not rescue DNA repair defects in Fanconi anemia patient cells. Cell Cycle, 2020, 19, 2553-2561.	2.6	6
49	Comparison of the clinical phenotype and haematological course of siblings with Fanconi anaemia. British Journal of Haematology, 2021, 193, 971-975.	2.5	6
50	A homozygous missense variant in UBE2T is associated with a mild Fanconi anemia phenotype. Haematologica, 2021, 106, 1188-1192.	3.5	3