Assoc Sinan Bayindir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149877/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The solvent-controlled regioselective synthesis of 3-amino-5-aryl-rhodanines as novel inhibitors of human carbonic anhydrase enzymes. Tetrahedron, 2022, 120, 132896.	1.9	5
2	The synthesis, current transformer mechanism and structural properties of novel rhodanine-based Al/Bis(Rh)-Ph/p-Si and Al/Bis(Rh)-TPE/p-Si heterojunctions. Journal of Molecular Structure, 2021, 1231, 129699.	3.6	10
3	The isolation of secondary metabolites from Rheum ribes L. and the synthesis of new semi-synthetic anthraquinones: Isolation, synthesis and biological activity. Food Chemistry, 2021, 342, 128378.	8.2	26
4	Water-ratio directed selective turn-on fluorescence detection of copper and mercury in acetonitrile. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 418, 113418.	3.9	11
5	The impact of metal coordination on the assembly of bis(indolyl)methane-naphthalene-diimide amphiphiles. Dalton Transactions, 2020, 49, 13685-13692.	3.3	10
6	Inhibition effect of rhodanines containing benzene moieties on pentose phosphate pathway enzymes and molecular docking. Journal of Molecular Structure, 2020, 1220, 128700.	3.6	18
7	The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorganic Chemistry, 2019, 90, 103096.	4.1	71
8	A novel pyrene-based selective colorimetric and ratiometric turn-on sensing for copper. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 6-11.	3.9	43
9	The synthesis of new bola-amphiphile TPEs and the comparison of current transformer mechanism and structural properties for Al/Bis(HCTA)-TPE/p-Si and Al/Bis(HCOA)-TPE/p-Si heterojunctions. Composites Part B: Engineering, 2019, 172, 226-233.	12.0	25
10	The easy synthesis of new <i>N</i> -substituted 5-oxindoline-rhodanines and their sensing ability: the recognition of acetate ions in aqueous solution. New Journal of Chemistry, 2019, 43, 8168-8178.	2.8	10
11	A simple oxindole-based colorimetric HSO4Â⁻ sensor: Naked-eye detection and spectroscopic analysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 376, 146-154.	3.9	18
12	A simple rhodanine-based fluorescent sensor for mercury and copper: The recognition of Hg2+ in aqueous solution, and Hg2+/Cu2+ in organic solvent. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372, 235-244.	3.9	56
13	The synthesis of new oxindoles as analogs of natural product 3,3′-bis(indolyl)oxindole and in vitro evaluation of the enzyme activity of G6PD and 6PGD. Turkish Journal of Chemistry, 2018, 42, .	1.2	24
14	The synthesis of <i>N</i> â€benzoylindoles as inhibitors of rat erythrocyte glucoseâ€6â€phosphate dehydrogenase and 6â€phosphogluconate dehydrogenase. Journal of Biochemical and Molecular Toxicology, 2018, 32, e22193.	3.0	19
15	Bismuth nitrate-promoted disproportionative condensation of indoles with cyclohexanone: a new-type azafulvenium reactivity of indole. New Journal of Chemistry, 2017, 41, 9674-9687.	2.8	7
16	Condensation of Indoline with Some 1,2―and 1,3â€Diketones. Journal of Heterocyclic Chemistry, 2016, 53, 2096-2101.	2.6	8
17	A facile one-pot method to synthesise 2-alkylated indole and 2,2′-bis(indolyl)methane derivatives using ketones as electrophiles and their anion sensing ability. RSC Advances, 2016, 6, 72959-72967.	3.6	25
18	Redox Amination Scope of Benzylic Ketones with Indoline: Synthetic and Mechanistic Insights. Journal of Heterocyclic Chemistry, 2015, 52, 1540-1553.	2.6	12

#	Article	IF	CITATIONS
19	Synthesis of <i>N</i> â€Alkylated Indolines and Indoles from Indoline and Aliphatic Ketones. Journal of Heterocyclic Chemistry, 2015, 52, 1589-1594.	2.6	11
20	4,7-Dihydroindole: A Synthon for the Preparations of 2-Substituted Indoles. Current Organic Synthesis, 2014, 11, 167-181.	1.3	7
21	Synthesis of highly N-substituted indole library via conjugate additions ofÂindoline and their synthetic tool potentials. Tetrahedron, 2012, 68, 5619-5630.	1.9	35
22	An Efficient Synthesis of New Aza-Substituted Indoles via Michael-Type Addition. Synlett, 2010, 2010, 1455-1458.	1.8	4