Xinming Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6149578/xinming-li-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

96
papers

8,599
citations

49
p-index

9-index

99
ext. papers

9,692
ext. citations

10.7
avg, IF

L-index

#	Paper	IF	Citations
96	Design and applications of graphene-based flexible and wearable physical sensing devices. <i>2D Materials</i> , 2021 , 8, 022001	5.9	8
95	Analog Sensing and Computing Systems with Low Power Consumption for Gesture Recognition. <i>Advanced Intelligent Systems</i> , 2021 , 3, 2000184	6	9
94	In Situ Dynamic Manipulation of Graphene Strain Sensor with Drastically Sensing Performance Enhancement. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000269	6.4	14
93	CoNiFe Layered Double Hydroxide/RuO Nanosheet Superlattice as Carbon-Free Electrocatalysts for Water Splitting and Li-O Batteries. <i>ACS Applied Materials & Acs Applied </i>	9.5	18
92	Fabrication of MoO/MoC-Layered Hybrid Structures by Direct Thermal Oxidation of MoC. <i>ACS Applied Materials & Direct Moc. ACS</i> (12, 10755-10762)	9.5	13
91	Ultrasensitive micro/nanocrack-based graphene nanowall strain sensors derived from the substrate% Poisson% ratio effect. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 10310-10317	13	15
90	Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. <i>Science</i> , 2019 , 364, 1057-1062	33.3	291
89	Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors. <i>Nano Energy</i> , 2019 , 57, 214-221	17.1	46
88	A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials. <i>Advanced Functional Materials</i> , 2018 , 28, 1705879	15.6	59
87	Graphene: Synthetic Multifunctional Graphene Composites with Reshaping and Self-Healing Features via a Facile Biomineralization-Inspired Process (Adv. Mater. 34/2018). <i>Advanced Materials</i> , 2018 , 30, 1870253	24	1
86	Graphene Foams: A Bubble-Derived Strategy to Prepare Multiple Graphene-Based Porous Materials (Adv. Funct. Mater. 23/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870161	15.6	1
85	Enhanced Photoresponse in Interfacial Gated Graphene Phototransistor With Ultrathin Al2O3 Dielectric. <i>IEEE Electron Device Letters</i> , 2018 , 39, 987-990	4.4	6
84	Advances in graphene-based polymer composites with high thermal conductivity 2018 , 2, 1-17		11
83	Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters. <i>Applied Surface Science</i> , 2018 , 435, 809-814	6.7	57
82	Properties of graphene-metal contacts probed by Raman spectroscopy. <i>Carbon</i> , 2018 , 127, 491-497	10.4	54
81	The Interaction between Quantum Dots and Graphene: The Applications in Graphene-Based Solar Cells and Photodetectors. <i>Advanced Functional Materials</i> , 2018 , 28, 1804712	15.6	50
80	Synthetic Multifunctional Graphene Composites with Reshaping and Self-Healing Features via a Facile Biomineralization-Inspired Process. <i>Advanced Materials</i> , 2018 , 30, e1803004	24	45

(2017-2017)

79	Water-driven actuation of Ornithoctonus huwena spider silk fibers. <i>Applied Physics Letters</i> , 2017 , 110, 053103	3.4	6
78	Synergistic Effects of Wrinkled Graphene and Plasmonics in Stretchable Hybrid Platform for Surface-Enhanced Raman Spectroscopy. <i>Advanced Optical Materials</i> , 2017 , 5, 1600715	8.1	19
77	In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 6164-6169	13	120
76	A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon?. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	144
75	Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 24148-24154	9.5	89
74	Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. <i>Applied Physics Reviews</i> , 2017 , 4, 021306	17.3	368
73	Self-Assembled Graphene Film as Low Friction Solid Lubricant in Macroscale Contact. <i>ACS Applied Materials & ACS Applied & ACS App</i>	9.5	73
72	Poly (ethylene imine)-modulated transport behaviors of graphene field effect transistors with double Dirac points. <i>Journal of Applied Physics</i> , 2017 , 121, 134305	2.5	9
71	Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. <i>ACS Nano</i> , 2017 , 11, 4507-4513	16.7	315
70	High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. <i>Nanoscale</i> , 2017 , 9, 6020-6025	7.7	63
69	Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS Film with Spatial Homogeneity and the Visualization of Grain Boundaries. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 12073-12081	9.5	99
68	Hybrid Materials: Synergistic Effects of Wrinkled Graphene and Plasmonics in Stretchable Hybrid Platform for Surface-Enhanced Raman Spectroscopy (Advanced Optical Materials 6/2017). Advanced Optical Materials, 2017, 5,	8.1	1
67	Synergistic Effects of Plasmonics and Electron Trapping in Graphene Short-Wave Infrared Photodetectors with Ultrahigh Responsivity. <i>ACS Nano</i> , 2017 , 11, 430-437	16.7	153
66	Highly Crumpled All-Carbon Transistors for Brain Activity Recording. <i>Nano Letters</i> , 2017 , 17, 71-77	11.5	33
65	Temperature-dependent transport and hysteretic behaviors induced by interfacial states in MoS field-effect transistors with lead-zirconate-titanate ferroelectric gating. <i>Nanotechnology</i> , 2017 , 28, 045	5204	12
64	High-Quality Monolithic Graphene Films via Laterally Stitched Growth and Structural Repair of Isolated Flakes for Transparent Electronics. <i>Chemistry of Materials</i> , 2017 , 29, 7808-7815	9.6	35
63	Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization. 2D Materials, 2017, 4, 035020	5.9	17
62	Hybrid graphene tunneling photoconductor with interface engineering towards fast photoresponse and high responsivity. <i>Npj 2D Materials and Applications</i> , 2017 , 1,	8.8	62

61	A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring. <i>ACS Sensors</i> , 2017 , 2, 967-974	9.2	194
60	The physics and chemistry of graphene-on-surfaces. <i>Chemical Society Reviews</i> , 2017 , 46, 4417-4449	58.5	247
59	Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane. <i>ACS Applied Materials & Company: Interfaces</i> , 2017 , 9, 24111-24117	9.5	70
58	Tunable transport characteristics of double-gated graphene field-effect transistors using P(VDF-TrFE) ferroelectric gating. <i>Carbon</i> , 2016 , 96, 695-700	10.4	13
57	Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14789-14795	13	115
56	Large-Area Ultrathin Graphene Films by Single-Step Marangoni Self-Assembly for Highly Sensitive Strain Sensing Application. <i>Advanced Functional Materials</i> , 2016 , 26, 1322-1329	15.6	270
55	Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing. <i>Materials Horizons</i> , 2016 , 3, 248-255	14.4	177
54	NO2-induced performance enhancement of PEDOT:PSS/Si hybrid solar cells with a high efficiency of 13.44. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 7184-9	3.6	11
53	Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 1992-7	3.6	18
52	High-Efficiency Large-Area Carbon Nanotube-Silicon Solar Cells. Advanced Energy Materials, 2016 , 6, 16	0 <u>0</u> 0\$5	25
51	High Detectivity Graphene-Silicon Heterojunction Photodetector. Small, 2016, 12, 595-601	11	285
50	Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors. <i>Advanced Functional Materials</i> , 2016 , 26, 2078-2084	15.6	276
49	Schottky diode characteristics and 1/f noise of high sensitivity reduced graphene oxide/Si heterojunction photodetector. <i>Journal of Applied Physics</i> , 2016 , 119, 124303	2.5	15
48	The grapheneBemiconductor Schottky junction. <i>Physics Today</i> , 2016 , 69, 46-51	0.9	56
47	Photo-Promoted Platinum Nanoparticles Decorated MoS2@Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation. <i>ACS Applied Materials & Ap</i>	9.5	63
46	Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper. <i>Chemistry of Materials</i> , 2016 , 28, 3360-3366	9.6	27
45	Temperature-dependent electrical transport properties in graphene/Pb(Zr0.4Ti0.6)O3 field effect transistors. <i>Carbon</i> , 2015 , 93, 384-392	10.4	13
44	Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes.	7.7	154

(2014-2015)

43	Role of hydrogen in the chemical vapor deposition growth of MoS2 atomic layers. <i>Nanoscale</i> , 2015 , 7, 8398-404	7.7	49
42	TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8133-8138	13	38
41	MoS2 Field-Effect Transistors With Lead Zirconate-Titanate Ferroelectric Gating. <i>IEEE Electron Device Letters</i> , 2015 , 36, 784-786	4.4	42
40	Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application. <i>ACS Nano</i> , 2015 , 9, 10867-75	16.7	220
39	Photo-induced selective gas detection based on reduced graphene oxide/Si Schottky diode. <i>Carbon</i> , 2015 , 84, 138-145	10.4	46
38	Galvanism of continuous ionic liquid flow over graphene grids. <i>Applied Physics Letters</i> , 2015 , 107, 08160	153.4	28
37	HfO2 dielectric thickness dependence of electrical properties in graphene field effect transistors with double conductance minima. <i>Journal of Applied Physics</i> , 2015 , 118, 144301	2.5	9
36	Carbon/Silicon Heterojunction Solar Cells: State of the Art and Prospects. <i>Advanced Materials</i> , 2015 , 27, 6549-74	24	144
35	Organic bioelectronics for neural interfaces. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 6424-6430	7.1	37
34	Dynamically stretchable supercapacitors based on graphene woven fabric electrodes. <i>Nano Energy</i> , 2015 , 15, 83-91	17.1	69
33	All carbon coaxial supercapacitors based on hollow carbon nanotube sleeve structure. <i>Nanotechnology</i> , 2015 , 26, 045401	3.4	11
32	Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells. <i>Nano Letters</i> , 2015 , 15, 2104-10	11.5	346
31	Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. <i>Nanoscale</i> , 2014 , 6, 4909-14	7.7	88
30	Hybrid Heterojunction and Solid-State Photoelectrochemical Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1400224	21.8	39
29	Amorphous Nitrogen Doped Carbon Films: A Novel Corrosion Resistant Coating Material. <i>Advanced Engineering Materials</i> , 2014 , 16, 532-538	3.5	11
28	Effect of different gel electrolytes on graphene-based solid-state supercapacitors. <i>RSC Advances</i> , 2014 , 4, 36253-36256	3.7	129
27	Highly flexible and adaptable, all-solid-state supercapacitors based on graphene woven-fabric film electrodes. <i>Small</i> , 2014 , 10, 2583-8	11	76
26	Enhanced performance of PEDOT:PSS/n-Si hybrid solar cell by HNO3treatment. <i>Applied Physics Express</i> , 2014 , 7, 031603	2.4	7

25	Torsion sensors of high sensitivity and wide dynamic range based on a graphene woven structure. <i>Nanoscale</i> , 2014 , 6, 13053-9	7.7	42
24	Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. <i>Nano Research</i> , 2013 , 6, 602-610	10	42
23	Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 17752-7	3.6	142
22	Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19550-6	3.6	69
21	Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. <i>Energy and Environmental Science</i> , 2013 , 6, 108-115	35.4	134
20	Ion doping of graphene for high-efficiency heterojunction solar cells. <i>Nanoscale</i> , 2013 , 5, 1945-8	7.7	119
19	Large-Area Flexible CoreBhell Graphene/Porous Carbon Woven Fabric Films for Fiber Supercapacitor Electrodes. <i>Advanced Functional Materials</i> , 2013 , 23, n/a-n/a	15.6	29
18	Colloidal antireflection coating improves graphene-silicon solar cells. <i>Nano Letters</i> , 2013 , 13, 1776-81	11.5	277
17	Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 5736	13	145
16	Anomalous Behaviors of Graphene Transparent Conductors in GrapheneBilicon Heterojunction Solar Cells. <i>Advanced Energy Materials</i> , 2013 , 3, 1029-1034	21.8	90
15	Oil spill cleanup from sea water by carbon nanotube sponges. <i>Frontiers of Materials Science</i> , 2013 , 7, 170-176	2.5	57
14	Multi-layer graphene treated by O2 plasma for transparent conductive electrode applications. <i>Materials Letters</i> , 2012 , 73, 187-189	3.3	11
13	Optimization of graphene/silicon heterojunction solar cells 2012,		3
12	Graphene/silicon nanowire Schottky junction for enhanced light harvesting. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 721-5	9.5	193
11	Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties. <i>Langmuir</i> , 2011 , 27, 12164-71	4	166
10	Graphene-CdSe nanobelt solar cells with tunable configurations. <i>Nano Research</i> , 2011 , 4, 891-900	10	56
9	Hybrid thin films of graphene nanowhiskers and amorphous carbon as transparent conductors. <i>Chemical Communications</i> , 2010 , 46, 3502-4	5.8	32
8	Fabrication and field emission properties of multi-walled carbon nanotube/silicon nanowire array. Journal of Physics and Chemistry of Solids, 2010, 71, 708-711	3.9	6

LIST OF PUBLICATIONS

7	Graphene-on-silicon Schottky junction solar cells. Advanced Materials, 2010, 22, 2743-8	24	910
6	Light emission of double-walled carbon nanotube filaments doped with yttrium and europium. <i>Science in China Series D: Earth Sciences</i> , 2009 , 52, 252-255		1
5	Determination of band gaps of self-assembled carbon nanotube films using Tauc/DavisMott model. <i>Applied Physics A: Materials Science and Processing</i> , 2009 , 97, 341-344	2.6	70
4	Force- and light-controlled electrical transport characteristics of carbon nanotube 1D/2D bulk junctions. <i>Chemical Physics Letters</i> , 2009 , 481, 224-228	2.5	4
3	Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. <i>Nano Letters</i> , 2009 , 9, 4338-42	11.5	88
2	Graphene sheets from worm-like exfoliated graphite. <i>Journal of Materials Chemistry</i> , 2009 , 19, 3367		173

Quantum Dot and Heterojunction Solar Cells Containing Carbon Nanomaterials237-266