Charles N Pagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149299/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dynamics of Myoblast Transplantation Reveal a Discrete Minority of Precursors with Stem Cell–like Properties as the Myogenic Source. Journal of Cell Biology, 1999, 144, 1113-1122.	2.3	470
2	Myogenic Cell Lines Derived from Transgenic Mice Carrying a Thermolabile T Antigen: A Model System for the Derivation of Tissue-Specific and Mutation-Specific Cell Lines. Developmental Biology, 1994, 162, 486-498.	0.9	261
3	Long-term persistence and migration of myogenic cells injected into pre-irradiated muscles of mdx mice. Journal of the Neurological Sciences, 1993, 115, 191-200.	0.3	133
4	Osteopontin and skeletal muscle myoblasts: Association with muscle regeneration and regulation of myoblast function in vitro. International Journal of Biochemistry and Cell Biology, 2008, 40, 2303-2314.	1.2	97
5	Osteopontin, inflammation and myogenesis: influencing regeneration, fibrosis and size of skeletal muscle. Journal of Cell Communication and Signaling, 2014, 8, 95-103.	1.8	73
6	Inhibition of osteoblast apoptosis by thrombin. Bone, 2003, 33, 733-743.	1.4	69
7	Myogenic cell proliferation and generation of a reversible tumorigenic phenotype are triggered by preirradiation of the recipient site. Journal of Cell Biology, 2002, 157, 693-702.	2.3	67
8	Physiological death of hypertrophic chondrocytes. Osteoarthritis and Cartilage, 2007, 15, 575-586.	0.6	66
9	Covert persistence of mdx mouse myopathy is revealed by acute and chronic effects of irradiation. Journal of the Neurological Sciences, 1999, 164, 103-116.	0.3	63
10	Omega-1 knockdown in Schistosoma mansoni eggs by lentivirus transduction reduces granuloma size in vivo. Nature Communications, 2014, 5, 5375.	5.8	63
11	A DUAL-MARKER SYSTEM FOR QUANTITATIVE STUDIES OF MYOBLAST TRANSPLANTATION IN THE MOUSE1. Transplantation, 1997, 63, 1794-1797.	0.5	63
12	Protease-Activated Receptors: A Means of Converting Extracellular Proteolysis into Intracellular Signals. IUBMB Life, 2002, 53, 277-281.	1.5	60
13	The Role of Protease-Activated Receptor-1 in Bone Healing. American Journal of Pathology, 2005, 166, 857-868.	1.9	48
14	Osteopontin deficiency delays inflammatory infiltration and the onset of muscle regeneration in a model of muscle injury. DMM Disease Models and Mechanisms, 2013, 6, 197-205.	1.2	46
15	Protease-activated receptors in the musculoskeletal system. International Journal of Biochemistry and Cell Biology, 2008, 40, 1169-1184.	1.2	44
16	Activation of Protease-Activated Receptor-2 Leads to Inhibition of Osteoclast Differentiation. Journal of Bone and Mineral Research, 2003, 19, 507-516.	3.1	39
17	Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids. Bone, 2009, 44, 813-821.	1.4	39
18	Altered gene expression in early osteochondrosis lesions. Journal of Orthopaedic Research, 2009, 27, 452-457.	1.2	33

CHARLES N PAGEL

#	Article	IF	CITATIONS
19	Studies on the receptors mediating responses of osteoblasts to thrombin. International Journal of Biochemistry and Cell Biology, 2005, 37, 206-213.	1.2	29
20	Organization and Conservation of the GART/SON/DONSON Locus in Mouse and Human Genomes. Genomics, 2000, 68, 57-62.	1.3	28
21	Protease-Activated Receptor 2 Has Pivotal Roles in Cellular Mechanisms Involved in Experimental Periodontitis. Infection and Immunity, 2010, 78, 629-638.	1.0	28
22	Protease-Activated Receptor-1 Down-regulates the Murine Inflammatory and Humoral Response to Helicobacter pylori. Gastroenterology, 2010, 138, 573-582.	0.6	28
23	High Molecular Weight Gingipains from <i>Porphyromonas gingivalis</i> Induce Cytokine Responses from Human Macrophage-Like Cells via a Nonproteolytic Mechanism. Journal of Innate Immunity, 2009, 1, 109-117.	1.8	25
24	Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Bone, 2012, 50, 704-712.	1.4	25
25	Normal inflammation and regeneration of muscle following injury require osteopontin from both muscle and non-muscle cells. Skeletal Muscle, 2019, 9, 6.	1.9	22
26	Evaluation of antibodies directed against human protease-activated receptor-2. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 861-873.	1.4	20
27	The antiepileptic medications carbamazepine and phenytoin inhibit native sodium currents in murine osteoblasts. Epilepsia, 2016, 57, 1398-1405.	2.6	20
28	Functional responses of bone cells to thrombin. Biological Chemistry, 2006, 387, 1037-1041.	1.2	19
29	Myoblast transfer and gene therapy in muscular dystrophies. Microscopy Research and Technique, 1995, 30, 469-479.	1.2	16
30	Thrombin inhibits osteoclast differentiation through a non-proteolytic mechanism. Journal of Molecular Endocrinology, 2013, 50, 347-359.	1.1	16
31	Thrombin Is a Pro-Fibrotic Factor for Rat Renal Fibroblasts in vitro. Nephron Experimental Nephrology, 2005, 101, e42-e49.	2.4	15
32	Proteinaseâ€activated receptorâ€2 (PAR ₂) and mouse osteoblasts: Regulation of cell function and lack of specificity of PAR ₂ â€activating peptides. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 328-336.	0.9	15
33	Periostin expression distinguishes between light and dark hypertrophic chondrocytes. International Journal of Biochemistry and Cell Biology, 2010, 42, 880-889.	1.2	15
34	Identification of novel osteochondrosis— Associated genes. Journal of Orthopaedic Research, 2016, 34, 404-411.	1.2	15
35	Hypertrophy and physiological death of equine chondrocytes <i>in vitro</i> . Equine Veterinary Journal, 2007, 39, 546-552.	0.9	12
36	Evidence of apoptosis induced by viral protein 2 of chicken anaemia virus. Archives of Virology, 2015, 160, 2557-2563.	0.9	11

3

CHARLES N PAGEL

#	Article	IF	CITATIONS
37	Tumour progression and cancer-induced pain: A role for protease-activated receptor-2?. International Journal of Biochemistry and Cell Biology, 2014, 57, 149-156.	1.2	9
38	Keratinocyte-specific ablation of protease-activated receptor 2 prevents gingival inflammation and bone loss in a mouse model of periodontal disease. Cellular Microbiology, 2018, 20, e12891.	1.1	8
39	Myoblasts Isolated from Hypertrophy-Responsive Callipyge Muscles Show Altered Growth Rates and Increased Resistance to Serum Deprivation-Induced Apoptosis. Cells Tissues Organs, 2008, 187, 141-151.	1.3	7
40	Identification of light and dark hypertrophic chondrocytes in mouse and rat chondrocyte pellet cultures. Tissue and Cell, 2010, 42, 121-128.	1.0	6
41	The vacuolar H + ATPase V 0 subunit d 2 is associated with chondrocyte hypertrophy and supports chondrocyte differentiation. Bone Reports, 2017, 7, 98-107.	0.2	6
42	The gingipains from <i>Porphyromonas gingivalis</i> do not directly induce osteoclast differentiation in primary mouse bone marrow cultures. Journal of Periodontal Research, 2009, 44, 565-567.	1.4	5
43	The Ovicidal, Larvacidal and Adulticidal Properties of 5,5′-Dimethyl-2,2′-Bipyridyl against Drosophila melanogaster. PLoS ONE, 2012, 7, e49961.	1.1	4
44	Thermal factors influencing the reliability of GaN HEMTs. , 2012, , .		3
45	Contractile properties of slow and fast skeletal muscles from protease activated receptorâ€1 null mice. Muscle and Nerve, 2014, 50, 991-998.	1.0	3
46	A T cell-specific knockout reveals an important role for protease-activated receptor 2 in lymphocyte development. International Journal of Biochemistry and Cell Biology, 2017, 92, 95-103.	1.2	3
47	Leiter to the Editor. Journal of Neuropathology and Experimental Neurology, 1991, 50, 278-279.	0.9	2
48	In situ hybridisation of a Y Chromosome-specific probe to male myoblasts after implantation into female skeletal muscle. Biochemical Society Transactions, 1991, 19, 195S-195S.	1.6	2
49	Chapter 12 The molecular and cellular biology of skeletal muscle myogenesis. Principles of Medical Biology, 1998, , 229-259.	0.1	Ο
50	Expression of novel cartilage genes during maturation of cultured chondrocytes. Bone Abstracts, 0, ,	0.0	0
51	Adipogenesis occurs at the expense of osteoblast differentiation in primary osteoblasts deficient in protease-activated receptor 2. Bone Abstracts, 0, , .	0.0	0
52	The vacuolar H+ ATPase VO subunit D2 is associated with chondrocyte hypertrophy and supports chondrocyte differentiation. Bone Abstracts, 0, , .	0.0	0
53	Deletion of protease-activated receptor-2 improves bone and muscle pathology in dystrophin-deficient (mdx) mice. Bone Abstracts, 0, , .	0.0	0
54	Proteaseâ€activated receptorâ€2 dependent and independent responses of bone cells to prostate cancer cell secretory products. Prostate, 2022, 82, 723-739.	1.2	0