
Michail Kotelev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Natural aluminosilicate nanotubes loaded with RuCo as nanoreactors for Fischer-Tropsch synthesis. Science and Technology of Advanced Materials, 2022, 23, 17-30.	6.1	5
2	Selective Hydrogenation of Acetylene over Pd-Mn/Al2O3 Catalysts. Catalysts, 2020, 10, 624.	3.5	13
3	Effect of Biomass Hydrothermal Liquefaction Conditions on Fractional Composition and Physical Properties of the Obtained Bio-Oil. Chemistry and Technology of Fuels and Oils, 2020, 55, 661-665.	0.5	0
4	Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer–Tropsch Synthesis. Molecules, 2020, 25, 1764.	3.8	29
5	Composition and Properties of microalgae Biomass Hydrothermal Liquefaction Products. Chemistry and Technology of Fuels and Oils, 2019, 55, 373-377.	0.5	5
6	Cellulose Nanofibrils and Tubular Halloysite as Enhanced Strength Gelation Agents. Polymers, 2019, 11, 919.	4.5	14
7	Hydroconversion of Aromatic Hydrocarbons over Bimetallic Catalysts. Catalysts, 2019, 9, 384.	3.5	11
8	Production of Radiation Cross-Linked Cellulose-Based Polymeric Materials*. Chemistry and Technology of Fuels and Oils, 2019, 54, 733-737.	0.5	0
9	Catalyst Effect on Grout Composition of Microalgae Biomass Hydrothermal Liquefaction Products. Chemistry and Technology of Fuels and Oils, 2019, 55, 511-514.	0.5	4
10	Catalytic Conversion of Synthesis Gas to Olefins and Alcohols in the Presence of Fe/C Catalysts. Petroleum Chemistry, 2019, 59, 1249-1255.	1.4	3
11	Effect of Thickeners on Low-Temperature Greases. Chemistry and Technology of Fuels and Oils, 2019, 55, 540-551.	0.5	4
12	Biodiesel fuel production by Aspergillus niger whole-cell biocatalyst in optimized medium. Mycoscience, 2018, 59, 147-152.	0.8	20
13	Nanoparticles Formed onto/into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chemical Record, 2018, 18, 858-867.	5.8	56
14	Two-step separation of bio-oil from condensed products of hydrothermal liquefaction of microalgae. Journal of Physics: Conference Series, 2018, 1111, 012057.	0.4	2
15	Hydroconversion of Oxidation Products of Sulfur-Containing Aromatic Compounds. Russian Journal of Applied Chemistry, 2018, 91, 981-989.	0.5	4
16	Amplification of surface-enhanced Raman scattering by the oxidation of capping agents on gold nanoparticles. RSC Advances, 2018, 8, 19051-19057.	3.6	17
17	Fluorescence and Cytotoxicity of Cadmium Sulfide Quantum Dots Stabilized on Clay Nanotubes. Nanomaterials, 2018, 8, 391.	4.1	43
18	Synthesis of bimetallic gold/silver nanoparticles via in situ seeding. Russian Journal of Physical Chemistry A, 2017, 91, 141-144.	0.6	3

MICHAIL KOTELEV

#	Article	IF	CITATIONS
19	Antiknock Properties of Blends of 2-Methylfuran and 2,5-Dimethylfuran with Reference Fuel. Chemistry and Technology of Fuels and Oils, 2017, 53, 147-153.	0.5	9
20	The effect of methylfurans on the physicochemical and performance characteristics of finished motor gasoline. Petroleum Chemistry, 2017, 57, 914-922.	1.4	2
21	Investigation of the Influence of Conditions of Reprecipitation of Cellulose on its Adsorption Properties. Chemistry and Technology of Fuels and Oils, 2017, 53, 722-726.	0.5	4
22	Phase equilibrium for clathrate hydrate formed in methaneÂ+ÂwaterÂ+Âethylene carbonate system. Fluid Phase Equilibria, 2017, 432, 1-9.	2.5	19
23	Synthesis of large uniform gold and core–shell gold–silver nanoparticles: Effect of temperature control. Russian Journal of Physical Chemistry A, 2016, 90, 152-157.	0.6	9
24	Size-selective contrasting of cracks on a metal surface by gold nanoparticles. Mendeleev Communications, 2015, 25, 356-357.	1.6	1
25	Natural Ceramic Nanotube Substrates for Surface-Enhanced Raman Spectroscopy. Jom, 2015, 67, 2877-2880.	1.9	3
26	Gold nanoparticles modification by femtosecond laser pulses in the air. High Temperature, 2015, 53, 605-608.	1.0	1
27	Synthesis of gold nanoparticles in organogels. Mendeleev Communications, 2014, 24, 53-54.	1.6	3
28	Spectroscopy of Scattered Light for the Characterization of Micro and Nanoscale Objects in Biology and Medicine. Applied Spectroscopy, 2014, 68, 133-154.	2.2	26
29	Waste-Free SHS Technology of Hydrofining Catalyst Production. Chemistry and Technology of Fuels and Oils, 2014, 50, 1-4.	0.5	0
30	Rapid Optimization of Metal Nanoparticle Surface Modification with High-Throughput Gel Electrophoresis. ACS Nano, 2014, 8, 1449-1456.	14.6	12
31	Effect of Catalyst Type on Composition of Coconut Oil Hydrocatalytic Treatment Products. Chemistry and Technology of Fuels and Oils, 2014, 50, 95-98.	0.5	2
32	Ultrashort laser pulse-induced anti-Stokes photoluminescence of hot electrons in gold nanorods. Laser Physics Letters, 2014, 11, 075902.	1.4	8
33	Natranaerobaculum magadiense gen. nov., sp. nov., an anaerobic, alkalithermophilic bacterium from soda lake sediment. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 4456-4461.	1.7	21
34	Photobioreactor operation condition optimization for high-energy cyanobacterial biomass synthesis to produce third-generation biofuels. Chemistry and Technology of Fuels and Oils, 2013, 49, 1-4.	0.5	6
35	Production of energy-dense biomass of microalgae Botryococcus braunii and Chlorella in a photobioreactor. Chemistry and Technology of Fuels and Oils, 2012, 48, 8-12.	0.5	3
36	<i>N</i> â€heterocyclic carbenes. IV. ¹ synthesis of symmetrical and unsymmetrical imidazolium salts with abietane moiety. Heteroatom Chemistry, 2012, 23, 5-15.	0.7	7

#	Article	IF	CITATIONS
37	Coaxial microwave plasma source. Plasma Physics Reports, 2011, 37, 965-971.	0.9	3
38	Chiral ionic liquids based on abietane. Russian Journal of Organic Chemistry, 2009, 45, 404-407.	0.8	9
39	Synthesis of 2-aryl-5,5-dimethyl-5,6-dihydro-1,2,4-triazolo-[3,4-a]isoquinolinium tetrafluoroborates. Russian Journal of Organic Chemistry, 2008, 44, 1091-1093.	0.8	2