Mariya D Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6149021/publications.pdf

Version: 2024-02-01

16	275 citations	1040056 9 h-index	17 g-index
papers	Citations	II-IIIQCA	g-mucx
17 all docs	17 docs citations	17 times ranked	357 citing authors

#	Article	IF	CITATIONS
1	Encapsulation of Homogeneous Catalysts in Porous Polymer Nanocapsules Produces Fast-Acting Selective Nanoreactors. ACS Nano, 2016, 10, 11397-11406.	14.6	50
2	Dye-Loaded Porous Nanocapsules Immobilized in a Permeable Polyvinyl Alcohol Matrix: A Versatile Optical Sensor Platform. Analytical Chemistry, 2012, 84, 2695-2701.	6.5	47
3	Facile Directed Assembly of Hollow Polymer Nanocapsules within Spontaneously Formed Catanionic Surfactant Vesicles. Langmuir, 2014, 30, 7061-7069.	3.5	39
4	Directed Assembly of Vesicle-Templated Polymer Nanocapsules under Near-Physiological Conditions. Langmuir, 2015, 31, 2561-2568.	3.5	25
5	Synergistic self-assembly of scaffolds and building blocks for directed synthesis of organic nanomaterials. Chemical Communications, 2013, 49, 11026.	4.1	23
6	Smallâ€Volume pH Sensing with a Capillary Optode Utilizing Dye‣oaded Porous Nanocapsules in a Hydrogel Matrix. Electroanalysis, 2015, 27, 733-744.	2.9	17
7	Building Functional Nanodevices with Vesicle-Templated Porous Polymer Nanocapsules. Accounts of Chemical Research, 2019, 52, 189-198.	15.6	16
8	Unraveling the Single-Nanometer Thickness of Shells of Vesicle-Templated Polymer Nanocapsules. Journal of Physical Chemistry Letters, 2017, 8, 3630-3636.	4.6	12
9	Controlling the Encapsulation of Charged Molecules in Vesicle-Templated Nanocontainers through Electrostatic Interactions with the Bilayer Scaffold. Langmuir, 2017, 33, 7732-7740.	3.5	11
10	Ionâ€Selective Optodes in a Sampling Capillary for Tear Fluid Analysis. Electroanalysis, 2012, 24, 42-52.	2.9	9
11	Novel turbidimetric method to study polymer swelling. Microchemical Journal, 2012, 103, 97-104.	4.5	8
12	Tuning Optical Properties of Encapsulated Clusters of Gold Nanoparticles through Stimuliâ€Triggered Controlled Aggregation. Chemistry - A European Journal, 2016, 22, 7702-7705.	3.3	5
13	Deciphering and Controlling Structural and Functional Parameters of the Shells in Vesicle-Templated Polymer Nanocapsules. Langmuir, 2019, 35, 13020-13030.	3.5	4
14	Swellable Copolymers of N-isopropylacrylamide and Alkyl Acrylic Acids for Optical pH Sensing. Molecules, 2020, 25, 1408.	3.8	3
15	Synthesis and Characterization of N-Isopropylacrylamide Microspheres as pH Sensors. Sensors, 2021, 21, 6493.	3.8	3
16	Characterization of Swellable Molecularly Imprinted Polymer Particles by Surface Plasmon Resonance Spectroscopy. Applied Spectroscopy, 2012, 66, 440-446.	2.2	2