Fabien Le Grand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148901/publications.pdf Version: 2024-02-01

FARIEN LE CRAND

#	Article	IF	CITATIONS
1	Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nature Cell Biology, 2010, 12, 153-163.	4.6	1,299
2	Asymmetric Self-Renewal and Commitment of Satellite Stem Cells in Muscle. Cell, 2007, 129, 999-1010.	13.5	1,145
3	Wnt7a Activates the Planar Cell Polarity Pathway to Drive the Symmetric Expansion of Satellite Stem Cells. Cell Stem Cell, 2009, 4, 535-547.	5.2	435
4	Skeletal muscle satellite cells and adult myogenesis. Current Opinion in Cell Biology, 2007, 19, 628-633.	2.6	415
5	Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nature Cell Biology, 2008, 10, 77-84.	4.6	323
6	High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations. Molecular Cell, 2019, 74, 609-621.e6.	4.5	271
7	The Molecular Regulation of Muscle Stem Cell Function. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 323-331.	2.0	214
8	Autocrine and Paracrine Angiopoietin 1/Tie-2 Signaling Promotes Muscle Satellite Cell Self-Renewal. Cell Stem Cell, 2009, 5, 298-309.	5.2	197
9	Wnt Signaling in Skeletal Muscle Development and Regeneration. Progress in Molecular Biology and Translational Science, 2018, 153, 157-179.	0.9	116
10	p38-γ–dependent gene silencing restricts entry into the myogenic differentiation program. Journal of Cell Biology, 2009, 187, 991-1005.	2.3	105
11	Bmp Signaling at the Tips of Skeletal Muscles Regulates the Number of Fetal Muscle Progenitors and Satellite Cells during Development. Developmental Cell, 2010, 18, 643-654.	3.1	105
12	β-Catenin Activation in Muscle Progenitor Cells Regulates Tissue Repair. Cell Reports, 2016, 15, 1277-1290.	2.9	100
13	Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration. Journal of Cell Biology, 2012, 198, 815-832.	2.3	96
14	Satellite cell loss and impaired muscle regeneration in selenoprotein N deficiency. Human Molecular Genetics, 2011, 20, 694-704.	1.4	87
15	Megf10 regulates the progression of the satellite cell myogenic program. Journal of Cell Biology, 2007, 179, 911-922.	2.3	79
16	Resident Endothelial Precursors in Muscle, Adipose, and Dermis Contribute to Postnatal Vasculogenesis. Stem Cells, 2007, 25, 3101-3110.	1.4	77
17	Wnt/β-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skeletal Muscle, 2015, 5, 14.	1.9	75
18	TGFÎ ² signaling curbs cell fusion and muscle regeneration. Nature Communications, 2021, 12, 750.	5.8	61

Fabien Le Grand

#	Article	IF	CITATIONS
19	Genesis of muscle fiber-type diversity during mouse embryogenesis relies on Six1 and Six4 gene expression. Developmental Biology, 2011, 359, 303-320.	0.9	59
20	APC is required for muscle stem cell proliferation and skeletal muscle tissue repair. Journal of Cell Biology, 2015, 210, 717-726.	2.3	48
21	Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia. Scientific Reports, 2016, 6, 19196.	1.6	44
22	R-spondin1 Controls Muscle Cell Fusion through Dual Regulation of Antagonistic Wnt Signaling Pathways. Cell Reports, 2017, 18, 2320-2330.	2.9	40
23	Satellite Cell Self-Renewal. Current Topics in Developmental Biology, 2018, 126, 177-203.	1.0	37
24	BMP signaling regulates satellite cell dependent postnatal muscle growth. Development (Cambridge), 2017, 144, 2737-2747.	1.2	34
25	ÂÂÂMechanosensitivity of aged muscle stem cells. Journal of Orthopaedic Research, 2018, 36, 632-641.	1.2	29
26	Endothelial cells within embryonic skeletal muscles: a potential source of myogenic progenitors. Experimental Cell Research, 2004, 301, 232-241.	1.2	26
27	Dynein disruption perturbs post-synaptic components and contributes to impaired MuSK clustering at the NMJ: implication in ALS. Scientific Reports, 2016, 6, 27804.	1.6	26
28	Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discovery, 2016, 2, 16037.	3.1	26
29	Muscle satellite cells are functionally impaired in myasthenia gravis: consequences on muscle regeneration. Acta Neuropathologica, 2017, 134, 869-888.	3.9	20
30	Oxidative status of muscle is determined by p107 regulation of PGC-1α. Journal of Cell Biology, 2010, 190, 651-662.	2.3	19
31	Specific pattern of cell cycle during limb fetal myogenesis. Developmental Biology, 2014, 392, 308-323.	0.9	18
32	Myofiber stretch induces tensile and shear deformation of muscle stem cells in their native niche. Biophysical Journal, 2021, 120, 2665-2678.	0.2	13
33	Human and Murine Skeletal Muscle Reserve Cells. Methods in Molecular Biology, 2013, 1035, 165-177.	0.4	10
34	SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development (Cambridge), 2020, 147, .	1.2	6
35	AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle. Journal of Physiology, 2021, 599, 3081-3100.	1.3	6
36	Developmental Behavior of Embryonic Myogenic Progenitors Transplanted into Adult Muscle as Revealed by Desmin LacZ Recombinant Gene. Journal of Histochemistry and Cytochemistry, 2003, 51, 1255-1267.	1.3	5

#	Article	IF	CITATIONS
37	Oxidative status of muscle is determined by p107 regulation of PGC-1a. Journal of General Physiology, 2010, 136, i3-i3.	0.9	0
38	La signalisation TGFβ contrÃ1e la fusion cellulaire et la régénération musculaire. Les Cahiers De Myologie, 2019, , 33-34.	0.0	0