Michael S Packer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6148699/michael-s-packer-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10	5,477 citations	9	12
papers		h-index	g-index
12 ext. papers	7,312 ext. citations	28.5 avg, IF	6.22 L-index

#	Paper	IF	Citations
10	Phage-assisted evolution of botulinum neurotoxin proteases with reprogrammed specificity. <i>Science</i> , 2021 , 371, 803-810	33.3	9
9	Adenine base editing reduces misfolded protein accumulation and toxicity in alpha-1 antitrypsin deficient patient iPSC-hepatocytes. <i>Molecular Therapy</i> , 2021 , 29, 3219-3229	11.7	3
8	Directed evolution of adenine base editors with increased activity and therapeutic application. <i>Nature Biotechnology</i> , 2020 , 38, 892-900	44.5	125
7	Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. <i>Nature Biotechnology</i> , 2017 , 35, 371-376	44.5	437
6	Programmable base editing of All to GII in genomic DNA without DNA cleavage. <i>Nature</i> , 2017 , 551, 464-471	50.4	1643
5	Phage-assisted continuous evolution of proteases with altered substrate specificity. <i>Nature Communications</i> , 2017 , 8, 956	17.4	49
4	Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. <i>Science Advances</i> , 2017 , 3, eaao4774	14.3	380
3	Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. <i>Nature</i> , 2016 , 533, 420-4	50.4	2264
2	Methods for the directed evolution of proteins. <i>Nature Reviews Genetics</i> , 2015 , 16, 379-94	30.1	487
1	A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. <i>Nature Communications</i> , 2014 , 5, 5352	17.4	64