Fatang Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148472/publications.pdf

Version: 2024-02-01

83 2,801 papers citations

30 49
h-index g-index

84 84 all docs docs citations

84 times ranked 2654 citing authors

#	Article	IF	CITATIONS
1	Xanthan gum inclusion optimizes the sol-gel and mechanical properties of agar/konjac glucomannan system for designing core-shell structural capsules. Food Hydrocolloids, 2022, 122, 107101.	5.6	11
2	Physical, structural, and water barrier properties of emulsified blend film based on konjac glucomannan/agar/gum Arabic incorporating virgin coconut oil. LWT - Food Science and Technology, 2022, 154, 112683.	2.5	25
3	Deacetylation enhances the properties of konjac glucomannan/agar composites. Carbohydrate Polymers, 2022, 276, 118776.	5.1	19
4	Impact of Curdlan Addition on the Properties of Konjac Glucomannan/Ethyl Cellulose Composite Films. Starch/Staerke, 2022, 74, 2100194.	1.1	2
5	Increasing agar content improves the sol-gel and mechanical features of starch/agar binary system. Carbohydrate Polymers, 2022, 278, 118906.	5.1	7
6	Polyvinyl alcohol inclusion can optimize the sol-gel, mechanical and hydrophobic features of agar/konjac glucomannan system. Carbohydrate Polymers, 2022, 277, 118879.	5.1	15
7	The use of cellulose fiber from office waste paper to improve the thermal insulation-related property of konjac glucomannan/starch aerogel. Industrial Crops and Products, 2022, 177, 114424.	2.5	27
8	Properties of film-forming emulsions and films based on corn starch/sodium alginate/gum Arabic as affected by virgin coconut oil content. Food Packaging and Shelf Life, 2022, 32, 100819.	3.3	23
9	Fibrillar assembly of whey protein isolate and gum Arabic as iron carrier for food fortification. Food Hydrocolloids, 2022, 128, 107608.	5.6	17
10	Increasing xanthan gum content could enhance the performance of agar/konjac glucomannan-based system. Food Hydrocolloids, 2022, 132, 107845.	5.6	7
11	Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. International Journal of Biological Macromolecules, 2021, 166, 1499-1507.	3.6	22
12	Impact of heating and drying temperatures on the properties of konjac glucomannan/curdlan blend films. International Journal of Biological Macromolecules, 2021, 167, 1544-1551.	3.6	22
13	Microstructure, Thermal Conductivity, and Flame Retardancy of Konjac Glucomannan Based Aerogels. Polymers, 2021, 13, 258.	2.0	11
14	Air filtration improvement of konjac glucomannan-based aerogel air filters through physical structure design. International Journal of Low-Carbon Technologies, 2021, 16, 867-872.	1.2	6
15	The advances of characterization and evaluation methods for the compatibility and assembly structure stability of food soft matter. Trends in Food Science and Technology, 2021, 112, 753-763.	7.8	13
16	Fabrication of iron loaded whey protein isolate/gum Arabic nanoparticles and its adsorption activity on oil-water interface. Food Hydrocolloids, 2021, 115, 106610.	5.6	25
17	Life cycle assessment of a novel biomass-based aerogel material for building insulation. Journal of Building Engineering, 2021, 44, 102988.	1.6	7
18	Investigation on the Efficient Removal of Particulate Matter (PM) with Biomass-Based Aerogel. Future Cities and Environment, 2021, 7, .	0.6	4

#	Article	lF	CITATIONS
19	Trivalent iron induced gelation in Artemisia sphaerocephala Krasch. polysaccharide. International Journal of Biological Macromolecules, 2020, 144, 690-697.	3.6	18
20	Supramolecular and molecular structures of potato starches and their digestion features. International Journal of Biological Macromolecules, 2020, 152, 939-947.	3.6	5
21	Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying. Carbohydrate Polymers, 2020, 250, 116840.	5.1	21
22	Bacillus species as potential biocontrol agents against citrus diseases. Biological Control, 2020, 151, 104419.	1.4	66
23	Genome-wide identification, characterization and expression analysis of lineage-specific genes within <i>Hanseniaspora</i> yeasts. FEMS Microbiology Letters, 2020, 367, .	0.7	6
24	Regular Film Property Changes of Konjac Glucomannan/Mung Bean Starch Blend Films. Starch/Staerke, 2020, 72, 1900149.	1.1	12
25	Sound absorption characteristics of KGM-based aerogel. International Journal of Low-Carbon Technologies, 2020, 15, 450-457.	1.2	20
26	Tailoring Multi-Level Structural and Practical Features of Gelatin Films by Varying Konjac Glucomannan Content and Drying Temperature. Polymers, 2020, 12, 385.	2.0	5
27	Iron encapsulated microstructured gel beads using an emulsification–gelation technique for an alginate-caseinate matrix. Food and Function, 2020, 11, 3811-3822.	2.1	7
28	The Shared and Specific Genes and a Comparative Genomics Analysis within Three Hanseniaspora Strains. International Journal of Genomics, 2019, 2019, 1-6.	0.8	2
29	Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films. International Journal of Biological Macromolecules, 2019, 138, 135-143.	3.6	26
30	Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydrate Polymers, 2019, 224, 115129.	5.1	43
31	A Novel and Accurate Method for Moisture Adsorption Isotherm Determination of Sultana Raisins. Food Analytical Methods, 2019, 12, 2491-2499.	1.3	4
32	The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydrate Polymers, 2019, 226, 115242.	5.1	113
33	A further study on supramolecular structure changes of waxy maize starch subjected to alkaline treatment by extended-q small-angle neutron scattering. Food Hydrocolloids, 2019, 95, 133-142.	5.6	26
34	Multi-scale structure and pasting/digestion features of yam bean tuber starches. Carbohydrate Polymers, 2019, 213, 199-207.	5.1	36
35	Influence of crosslinker amount on the microstructure and properties of starch-based superabsorbent polymers by one-step preparation at high starch concentration. International Journal of Biological Macromolecules, 2019, 129, 679-685.	3.6	32
36	Functional and pizza bake properties of Mozzarella cheese made with konjac glucomannan as a fat replacer. Food Hydrocolloids, 2019, 92, 125-134.	5.6	32

#	Article	IF	CITATIONS
37	Microstructure and Mechanical/Hydrophilic Features of Agar-Based Films Incorporated with Konjac Glucomannan. Polymers, 2019, 11, 1952.	2.0	27
38	Understanding the multi-scale structure and digestion rate of water chestnut starch. Food Hydrocolloids, 2019, 91, 311-318.	5.6	37
39	Microstructure and filtration performance of konjac glucomannan-based aerogels strengthened by wheat straw. International Journal of Low-Carbon Technologies, 2019, 14, 335-343.	1.2	18
40	Development of Penicillium italicum-Specific Primers for Rapid Detection among Fungal Isolates in Citrus. Journal of Microbiology and Biotechnology, 2019, 29, 984-988.	0.9	5
41	Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 2018, 107, 691-699.	2.9	45
42	Effect of alkanol surface grafting on the hydrophobicity of starch-based films. International Journal of Biological Macromolecules, 2018, 112, 761-766.	3.6	24
43	Stability, microstructure and rheological behavior of konjac glucomannan-zein mixed systems. Carbohydrate Polymers, 2018, 188, 260-267.	5.1	42
44	Relationships Between Cooking Properties and Physicochemical Properties in Brown and White Rice. Starch/Staerke, 2018, 70, 1700167.	1.1	19
45	Controllable hydrophilicity-hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films. Food Hydrocolloids, 2018, 79, 301-309.	5.6	64
46	Stability and digestibility of one- or bi-layered medium-chain triglyceride emulsions with gum Arabic and whey protein isolates by pancreatic lipase <i>in vitro</i> . Food and Function, 2018, 9, 1017-1027.	2.1	5
47	The influence of non-ionic surfactant on lipid digestion of gum Arabic stabilized oil-in-water emulsion. Food Hydrocolloids, 2018, 74, 78-86.	5.6	29
48	Preparation and stability of nano-scaled gel beads of î»-carrageenan bound with ferric ions. International Journal of Biological Macromolecules, 2018, 120, 2523-2529.	3.6	7
49	Effect of zein-based microencapsules on the release and oxidation of loaded limonene. Food Hydrocolloids, 2018, 84, 330-336.	5.6	37
50	Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydrate Polymers, 2018, 197, 284-291.	5.1	100
51	Investigation on curdlan dissociation by heating in water. Food Hydrocolloids, 2017, 70, 57-64.	5.6	49
52	pH-Sensitive drug delivery system based on hydrophobic modified konjac glucomannan. Carbohydrate Polymers, 2017, 171, 9-17.	5.1	29
53	Stability and phase behavior of konjac glucomannan-milk systems. Food Hydrocolloids, 2017, 73, 30-40.	5.6	33
54	An improved approach for evaluating the semicrystalline lamellae of starch granules by synchrotron SAXS. Carbohydrate Polymers, 2017, 158, 29-36.	5.1	36

#	Article	IF	CITATIONS
55	Structural characterization and properties of konjac glucomannan and zein blend films. International Journal of Biological Macromolecules, 2017, 105, 1096-1104.	3.6	131
56	Hydration-induced crystalline transformation of starch polymer under ambient conditions. International Journal of Biological Macromolecules, 2017, 103, 152-157.	3.6	25
57	Understanding the microstructure and absorption rate of starch-based superabsorbent polymers prepared under high starch concentration. Carbohydrate Polymers, 2017, 175, 141-148.	5.1	33
58	Effect of aggregate size on liquid absorption characteristics of konjac glucomannan superabsorbent. Journal of Applied Polymer Science, 2017, 134, 45416.	1.3	6
59	A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocolloids, 2017, 65, 24-34.	5.6	95
60	Edible Pickering emulsion stabilized by protein fibrils. Part 1: Effects of pH and fibrils concentration. LWT - Food Science and Technology, 2017, 76, 1-8.	2.5	93
61	Physical stability and rheological properties of konjac glucomannan-ethyl cellulose mixed emulsions. International Journal of Biological Macromolecules, 2016, 92, 423-430.	3.6	23
62	The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels. International Journal of Biological Macromolecules, 2016, 92, 1130-1135.	3.6	70
63	Effect of Gum Arabic, Gum Ghatti and Sugar Beet Pectin as Interfacial Layer on Lipid Digestibility in Oil-in-Water Emulsions. Food Biophysics, 2016, 11, 292-301.	1.4	14
64	Whey protein isolate/gum arabic intramolecular soluble complexes improving the physical and oxidative stabilities of conjugated linoleic acid emulsions. RSC Advances, 2016, 6, 14635-14642.	1.7	29
65	Characterization of konjac glucomannan-ethyl cellulose film formation via microscopy. International Journal of Biological Macromolecules, 2016, 85, 434-441.	3.6	41
66	Gelation of \hat{l}^2 -lactoglobulin and its fibrils in the presence of transglutaminase. Food Hydrocolloids, 2016, 52, 942-951.	5.6	21
67	Carboxymethyl modification of konjac glucomannan affects water binding properties. Carbohydrate Polymers, 2015, 130, 1-8.	5.1	54
68	Gum Arabic-stabilized conjugated linoleic acid emulsions: Emulsion properties in relation to interfacial adsorption behaviors. Food Hydrocolloids, 2015, 48, 110-116.	5.6	48
69	Microencapsulation of Lactobacillus acidophilus CGMCC1.2686: Correlation Between Bacteria Survivability and Physical Properties of Microcapsules. Food Biophysics, 2015, 10, 292-299.	1.4	21
70	Preparation and characterization of konjac glucomannan and ethyl cellulose blend films. Food Hydrocolloids, 2015, 44, 229-236.	5.6	83
71	Emulsification properties of sugar beet pectin after modification withÂhorseradish peroxidase. Food Hydrocolloids, 2015, 43, 107-113.	5.6	45
72	Konjac Polysaccharides Affect the Quality, Cell Structure, and Moisture Balance of Baked Bread. Cereal Chemistry, 2014, 91, 610-615.	1.1	7

#	Article	lF	CITATIONS
73	Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food Hydrocolloids, 2014, 39, 295-300.	5.6	62
74	Interactions between carboxymethyl konjac glucomannan and soy protein isolate in blended films. Carbohydrate Polymers, 2014, 101, 136-145.	5.1	102
75	Efficient induction of inulin fructotransferase by inulin and by difructose anhydride III in Arthrobacter aurescens SK 8.001. European Food Research and Technology, 2013, 236, 991-998.	1.6	4
76	Phase separation induced molecular fractionation of gum arabicâ€"Sugar beet pectin systems. Carbohydrate Polymers, 2013, 98, 699-705.	5.1	20
77	Impact of surfactants on the lipase digestibility of gum arabic-stabilized O/W emulsions. Food Hydrocolloids, 2013, 33, 393-401.	5.6	33
78	Complexation of Bovine Serum Albumin and Sugar Beet Pectin: Structural Transitions and Phase Diagram. Langmuir, 2012, 28, 10164-10176.	1.6	112
79	Complexation of bovine serum albumin and sugar beet pectin: Stabilising oil-in-water emulsions. Journal of Colloid and Interface Science, 2012, 388, 103-111.	5.0	81
80	Antimicrobial activity of nobiletin and tangeretin against Pseudomonas. Food Chemistry, 2012, 132, 1883-1890.	4.2	85
81	Mechanism of lowering water activity of konjac glucomannan and its derivatives. Food Hydrocolloids, 2012, 26, 383-388.	5.6	32
82	Rehydration of dried alginate gel beads: Effect of the presence of gelatin and gum arabic. Carbohydrate Polymers, 2011, 86, 1145-1150.	5.1	20
83	Structure and chain conformation of water-soluble heteropolysaccharides from Ganoderma lucidum. Carbohydrate Polymers, 2011, 86, 844-851.	5.1	68