
Florent Carn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6148385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A robust eco-compatible microporous iron coordination polymer for CO ₂ capture. Journal of Materials Chemistry A, 2022, 10, 8535-8545.	10.3	9
2	Flash Colloidal Gold Nanoparticle Assembly in a Milli Flow System: Implications for Thermoplasmonic and for the Amplification of Optical Signals. ACS Applied Nano Materials, 2022, 5, 6964-6971.	5.0	0
3	Tumor-Selective Immune-Active Mild Hyperthermia Associated with Chemotherapy in Colon Peritoneal Metastasis by Photoactivation of Fluorouracil–Gold Nanoparticle Complexes. ACS Nano, 2021, 15, 3330-3348.	14.6	28
4	Mechanical strength enhancement by grain size reduction in a soft colloidal polycrystal. Soft Matter, 2021, , .	2.7	0
5	Self-Assembly of Gold Nanoparticles with Oppositely Charged, Long, Linear Chains of Periodic Copolymers. Journal of Physical Chemistry B, 2020, 124, 900-908.	2.6	7
6	Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proceedings of the United States of America, 2020, 117, 103-113.	7.1	147
7	Self-Induced Crystallization in Charged Gold Nanoparticle-Semiflexible Biopolyelectrolyte Complexes. Langmuir, 2020, 36, 7925-7932.	3.5	5
8	Gold-based therapy: From past to present. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22639-22648.	7.1	85
9	Self-Assembly of Nanoparticles from Evaporating Sessile Droplets: Fresh Look into the Role of Particle/Substrate Interaction. Langmuir, 2020, 36, 11411-11421.	3.5	13
10	Morphological Control of Linear Particle Deposits from the Drying of Inkjet-Printed Rivulets. Journal of Physical Chemistry Letters, 2020, 11, 4559-4563.	4.6	8
11	Rational Design of Fractal Gold Nanosphere Assemblies with Optimized Photothermal Conversion Using a Quantitative Structure Property Relationship (QSPR) Approach. Journal of Physical Chemistry C, 2020, 124, 8938-8948.	3.1	10
12	Polyethyleneimine-assisted one-pot synthesis of quasi-fractal plasmonic gold nanocomposites as a photothermal theranostic agent. Nanoscale, 2019, 11, 3344-3359.	5.6	34
13	Disturbance of adhesomes by gold nanoparticles reveals a size- and cell type-bias. Biomaterials Science, 2019, 7, 389-408.	5.4	8
14	Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Scientific Reports, 2017, 7, 40075.	3.3	24
15	How does the size of gold nanoparticles depend on citrate to gold ratio in Turkevich synthesis? Final answer to a debated question. Journal of Colloid and Interface Science, 2017, 492, 191-198.	9.4	58
16	Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles. Small, 2017, 13, 1602030.	10.0	69
17	Toward an Understanding of the Microstructure and Interfacial Properties of PIMs/ZIF-8 Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2016, 8, 27311-27321.	8.0	93
18	Role of the ratio of biopolyelectrolyte persistence length to nanoparticle size in the structural tuning of electrostatic complexes. Physical Review E, 2016, 94, 032504.	2.1	15

FLORENT CARN

#	Article	IF	CITATIONS
19	Pickering emulsions with α-cyclodextrin inclusions: Structure and thermal stability. Journal of Colloid and Interface Science, 2016, 482, 48-57.	9.4	26
20	Dehydration, Dissolution, and Melting of Cyclodextrin Crystals. Journal of Physical Chemistry B, 2015, 119, 1433-1442.	2.6	25
21	Supramolecular Assembly of Gelatin and Inorganic Polyanions: Fine-Tuning the Mechanical Properties of Nanocomposites by Varying Their Composition and Microstructure. Chemistry of Materials, 2015, 27, 1452-1464.	6.7	25
22	Shape-Tailored Colloidal Molecules Obtained by Self-Assembly of Model Gold Nanoparticles with Flexible Polyelectrolyte. Langmuir, 2015, 31, 5731-5737.	3.5	10
23	Interfacing a heteropolytungstate complex and gelatin through a coacervation process: design of bionanocomposite films as novel electrocatalysts. Journal of Materials Chemistry A, 2014, 2, 9208-9220.	10.3	20
24	Control over the electrostatic self-assembly of nanoparticle semiflexible biopolyelectrolyte complexes. Soft Matter, 2013, 9, 5004.	2.7	26
25	Lithium-ion battery electrode prepared by confining carbon nanotubes/V2O5 nanoribbons suspension in model air–liquid foams. Solid State Sciences, 2013, 17, 134-139.	3.2	16
26	Structural Properties of Colloidal Complexes between Condensed Tannins and Polysaccharide Hyaluronan. Biomacromolecules, 2012, 13, 751-759.	5.4	43
27	Foam drainage study during plateau border mineralisation. Soft Matter, 2012, 8, 61-65.	2.7	16
28	Nanorods of Well-Defined Length and Monodisperse Cross-Section Obtained from Electrostatic Complexation of Nanoparticles with a Semiflexible Biopolymer. ACS Macro Letters, 2012, 1, 857-861.	4.8	13
29	Biopolymer folding driven nanoparticle reorganization in bio-nanocomposites. Soft Matter, 2012, 8, 2930.	2.7	19
30	Integrative chemistry portfolio toward designing and tuning vanadium oxide macroscopic fibers sensing and mechanical properties. Comptes Rendus Chimie, 2010, 13, 154-166.	0.5	7
31	Assembling Vanadium(V) Oxide and Gelatin into Novel Bionanocomposites with Unexpected Rubber-like Properties. Chemistry of Materials, 2010, 22, 398-408.	6.7	24
32	Foam Drainage in the Presence of Nanoparticleâ [~] 'Surfactant Mixtures. Langmuir, 2009, 25, 7847-7856.	3.5	132
33	Influence of Decavanadate Clusters on the Rheological Properties of Gelatin. Journal of Physical Chemistry B, 2008, 112, 12596-12605.	2.6	21
34	First example of biopolymer–polyoxometalate complex coacervation in gelatin–decavanadate mixtures. Soft Matter, 2008, 4, 735.	2.7	32
35	Multiwalled-carbon-nanotube-based carbon foams. Carbon, 2007, 45, 2317-2320.	10.3	47
36	Three-Dimensional Opal-Like Silica Foams. Langmuir, 2006, 22, 5469-5475.	3.5	42

FLORENT CARN

#	Article	IF	CITATIONS
37	Soft matter, sol–gel process and external magnetic field to design macrocellular silica scaffolds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 263, 341-346.	4.7	15
38	Anatase and Rutile TiO2 Macrocellular Foams: Air-Liquid Foaming Sol-Gel Process Towards Controlling Cell Sizes, Morphologies, and Topologies. Advanced Materials, 2005, 17, 62-66.	21.0	75
39	Macroscopic Fibers of Oriented Vanadium Oxide Ribbons and Their Application as Highly Sensitive Alcohol Microsensors. Advanced Materials, 2005, 17, 2970-2974.	21.0	69
40	Syntheses and characterization of highly mesoporous crystalline TiO2 macrocellular foams. Journal of Materials Chemistry, 2005, 15, 3887.	6.7	38
41	Tailor-Made Macroporous Vanadium Oxide Foams. Chemistry of Materials, 2005, 17, 644-649.	6.7	57
42	Shaping zirconium phosphate α-Zr(HPO4)2·H2O: from exfoliation to first α-ZrP 3D open-cell macrocellular foams. New Journal of Chemistry, 2005, 29, 1346.	2.8	20
43	Rational Design of Macrocellular Silica Scaffolds Obtained by a Tunable Sol–Gel Foaming Process. Advanced Materials, 2004, 16, 140-144.	21.0	101
44	Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templatesElectronic supplementary information (ESI) available: XRD profiles, nitrogen physisorption data and pore size distribution calculated from density functional theory, for the xSi-HIPE0.035 series. See http://www.rsc.org/suppdata/jm/b4/b400984c/. Journal of Materials Chemistry, 2004, 14, 1370.	6.7	186

4